The Impact of Sanctions on the Capitalization of Russian Companies: The Sectoral Aspect

Keywords: stock market, sanctions, sanctions index, text analysis

Abstract

The research purpose is to evaluate influence of sanctions on the Russian economy taking into consideration the sectoral aspect (oil and gas, telecommunications and consumer sector). The research methodology comprises econometric modeling (elastic net and GARCH modeling) and text analysis. In the paper we developed author’s sanction indices based on the text analysis. We used the EcSentiThemeLex dictionary to assess the news’ positivity and negativity. The empiric research base consists of news publications of the lenta.ru portal for the period from 01.01.2014 to 31.03.2023 represented by the thematic sections “economy” and “science and technology”. The research results are as follows. On the basis of GARCH modeling we revealed that sanctions have a negative impact on capitalization of the largest companies in
oil and gas, the consumer sector and telecommunications. The news tonality influences companies’ capitalization. We have developed sanctions indices (a minimal index, an expanded index, a maximally expanded index) which allow to assess the extent of sanctions pressure. On the basis of elastic net method we made the conclusion of priority of sentiment variables over the control ones, i.e. information on sanctions and its tonality influences the stock market more than the oil prices, rouble exchange rate and interbank rate in the short term. Sanctions influence is not industry specific.

However, the study does entail certain limitations: 1. reliance on publications from a single source; 2. the use of a single dictionary for evaluating news sentiment; 3. the sanctions index does not allow the incorporation of new terms when fresh sanctions are imposed. We intend to address these issues in future research.

Downloads

References

Crozet M., Hinz J. Collateral damage: The impact of the Russia sanctions on sanctioning countries’ exports. CEPII Working Paper. 2016;(16). URL: http://www.cepii.fr/PDF_PUB/wp/2016/wp2016-16.pdf

Crozet M., Hinz J. Friendly fire: The trade impact of the Russia sanctions and counter-sanctions. Economic Policy. 2020;35(101):97-146. https://doi.org/10.1093/epolic/eiaa006

Sonnenfeld J., Tian S., Sokolowski F., Wyrebkowski M., Kasprowicz M. Business retreats and sanctions are crippling the Russian economy. SSRN Electronic Journal. 2022. https://doi.org/10.2139/ssrn.4167193

Moghaddasi Kelishomi A., Nisticò R. Employment effects of economic sanctions in Iran. World Development. 2022;151:105760. https://doi.org/10.1016/j.worlddev.2021.105760

Tuzova Y., Qayum F. Global oil glut and sanctions: The impact on Putin’s Russia. Energy Policy. 2016;90:140-151. https://doi.org/10.1016/j.enpol.2015.12.008

Gutmann J., Neuenkirch M., Neumeier F. The economic effects of international sanctions: An event study. Universität Trier. Research Papers in Economics. 2021;(3). https://www.econstor.eu/bitstream/10419/243481/1/2021-03.pdf

Mahlstein K., Mcdaniel C., Schropp S., Tsigas M. Estimating the economic effects of sanctions on Russia: An allied trade embargo. The World Economy. 2022;45(11):3344-3383. https://doi.org/10.1111/twec.13311

Selden Z.A. Economic sanctions as instruments of American foreign policy. Westport, CT: Greenwood Publishing Group; 1999. 147 p.

Oxenstierna S. Western sanctions against Russia: How do they work? In: Rosefielde S., ed. Putin’s Russia: Economy, defence and foreign policy. Singapore: World Scientific Publishing Co.; 2018:433-452.

Haidar J.I. Sanctions and export deflections: Evidence from Iran. Economic Policy. 2017;32(90):319-335. https://doi.org/10.1093/epolic/eix002

Pond A. Economic sanctions and demand for protection. Journal of Conflict Resolution. 2017;61(5):1073-1094. https://doi.org/10.1177/0022002715596777

Ankudinov A., Ibragimov R., Lebedev O. Sanctions and the Russian stock market. Research in International Business and Finance. 2017;40:150-162. https://doi.org/10.1016/j.ribaf.2017.01.005

Nivorozhkin E., Castagneto-Gissey G. Russian stock market in the aftermath of the Ukrainian crisis. Russian Journal of Economics. 2016;2(1):23-40. https://doi.org/10.1016/j.ruje.2016.04.002

Gurvich E., Prilepskiy I. The impact of financial sanctions on the Russian economy. Russian Journal of Economics. 2015;1(4):359-385. https://doi.org/10.1016/j.ruje.2016.02.002

Dudlák T. After the sanctions: Policy challenges in transition to a new political economy of the Iranian oil and gas sectors. Energy Policy. 2018;121:464-475. https://doi.org/10.1016/j.enpol.2018.06.034

Babina T., Hilgenstock B., Itskhoki O., Mironov M., Ribakova E. Assessing the impact of international sanctions on Russian oil exports. SSRN Electronic Journal. 2023. http://dx.doi.org/10.2139/ssrn.4366337

Kolesnikova A., Fantazzini D. Asymmetry and hysteresis in the Russian gasoline market: The rationale for green energy exports. Energy Policy. 2021;157:112466. https://doi.org/10.1016/j.enpol.2021.112466

Witt M.A., Lewin A., Li P.P., Gaur A. Decoupling in international business: Evidence, drivers, impact and implications for IB research. Journal of World Business. 2023;58(1):101399. https://doi.org/10.1016/j.jwb.2022.101399

Demarais A. Backfire: How sanctions reshape the world against U.S. interests. New York, NY: Columbia University Press; 2022. 304 p.

Naidenova J., Novikova A. The reaction of Russian public companies’ stock prices to sanctions against Russia. Journal of Corporate Finance Research. 2018;12(3):27-38. https://doi.org/10.17323/j.jcfr.2073-0438.12.3.2018.27-38

Njoroge P., Baumann M., Baumann M.H., Shevchenko D. Stock price reactions to publications of financial statements: Evidence from the Moscow Stock Exchange. Journal of Corporate Finance Research. 2021;15(1):19-36. https://doi.org/10.17323/j.jcfr.2073-0438.15.1.2021.19-36

Aganin A.D. Russian stock index volatility: Oil and sanctions. Voprosy ekonomiki. 2020;(2):86-100. (In Russ.). https://doi.org/10.32609/0042-8736-2020-2-86-100

Afanasyev D., Fedorova E., Rogov O. On the impact of news tonality in international media on the Russian ruble exchange rate: Text analysis. Ekonomicheskii zhurnal Vysshei shkoly ekonomiki = The HSE Economic Journal. 2019;23(2):264-289. (In Russ.). https://doi.org/10.17323/1813-8691-2019-23-2-264-289

Shen Y., Ma T., Zhang S. Economic policy uncertainty index and China stock market volatility as applied to Russia. Innovatsii i investitsii = Innovation & Investment. 2019;(9):99-104. (In Russ.).

Hoerl A.E., Kennard R.W. Ridge regression: Biased estimation for Nonorthogonal problems. Technometrics. 1970;12(1):55-67. https://doi.org/10.2307/1267351

Tibshirani R.J., Taylor J. Degrees of freedom in LASSO problems. Annals of Statistics. 2012;40(2):1198-1232. https://doi.org/10.1214/12-AOS1003

Bidzhoyan D.S. Model for assessing the probability of revocation of a license from the Russian bank. Finance: Theory and Practice. 2018;22(2):26-37. https://doi.org/10.26794/2587-5671-2018-22-2-26-37

Wiebe J., Bruce R., O’Hara T. Development and use of a gold-standard data set for subjectivity classifications. In: Proc. 37th Annual Meeting of the Association for Computational Linguistics. College Park, MD: University of Maryland; 1999:246-253.

Graham J., Haidt J. The moral foundations dictionary. 2021. URL: https://moralfoundations.org/wp-content/uploads/files/downloads/moral%20foundations%20dictionary.dic

Krippendorff K. Content analysis: An introduction to its methodology. 2nd ed. London: SAGE Publications Ltd; 2004. 440 p.

Vaupel M., Bendig D., Fischer-Kreer D, Brettel M. The role of share repurchases for firms’ social and environmental sustainability. Journal of Business Ethics. 2023;183(2):401-428. https://doi.org/10.1007/s10551-022-05076-3

Hoberg G., Maksimovic V. Redefining financial constraints: A text-based analysis. The Review of Financial Studies. 2015;28(5):1312-1352. https://doi.org/10.1093/rfs/hhu089

Duriau V.J., Reger R.K., Pfarrer M.D. A content analysis of the content analysis literature in organization studies. Organizational Research Methods. 2007;10(1):5-34. https://doi.org/10.1177/1094428106289252

Short J.C., Broberg J.C., Cogliser C.C., Brigham K.H. Construct validation using computer-aided text analysis (CATA): An illustration using entrepreneurial orientation. Organizational Research Methods. 2010;13(2):320-347. https://doi.org/10.1177/1094428109335949

Baker S.R., Bloom N., Davis S.J. Measuring economic policy uncertainty. The Quarterly Journal of Economics. 2016;131(4):1593-1636. https://doi.org/10.1093/qje/qjw024

Fedorova E.A., Musienko S.O., Fedorov F.Yu., Vinogradova L.V. Impact of crisis coverage on the financial market of Russia. Finance: Theory and Practice. 2019;23(3):112-121. https://doi.org/10.26794/2587-5671-2019-23-3-112-121

King G., Lowe W. An automated information extraction tool for international conflict data with performance as good as human coders: A rare events evaluation design. International Organization. 2003;57(3):617-642. https://doi.org/10.1017/S0020818303573064

Omel’chenko A., Khrustalev E. The model of sanction intensity index: Evidence from Russia. Natsional'nye interesy: prioritety i bezopasnost' = National Interests: Priorities and Security. 2018;14(1):62-77. (In Russ.). https://doi.org/10.24891/ni.14.1.62

Dreger C., Kholodilin K., Ulbricht D., Fidrmuc J. Between the hammer and the anvil: The impact of economic sanctions and oil prices on Russia’s ruble. Journal of Comparative Economics. 2016;44(2):295-308. https://doi.org/10.1016/j.jce.2015.12.010

Xie Q., Zhang X., Ding Y., Song M. Monolingual and multilingual topic analysis using LDA and BERT embeddings. Journal of Informetrics. 2020;14(3):101055. https://doi.org/10.1016/j.joi.2020.101055

Atagün E., Hartoka B., Albayrak A. Topic modeling using LDA and BERT Techniques: Teknofest example. In: Proc. 2021 6th Int. conf. on computer science and engineering (UBMK). (Ankara, September 15-17, 2021). Piscataway, NJ: IEEE; 2021:660-664. https://doi.org/10.1109/UBMK52708.2021.9558988.

Loukachevitch N., Levchik A. Creating a general Russian sentiment lexicon. In: Proc. 10th Int. conf. on language resources and evaluation (LREC’16). (Portorož, May 2016). Paris: European Language Resources Association (ELRA); 2016:1171-1176. URL: https://aclanthology.org/L16-1186.pdf

McKenny A.F., Aguinis H., Short J.C., Anglin A.H. What doesn’t get measured does exist: Improving the accuracy of computer-aided text analysis. Journal of Management. 2018;44(7):2909-2933. https://doi.org/10.1177/0149206316657594

Grootendorst M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794. 2022. URL: https://arxiv.org/pdf/2203.05794v1.pdf

Fedorova E.A., Khrustova L.E., Musienko S.O. The analysis of sanctions’ influence on Russian stock market based on sanction index development. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Gumanitarnye nauki = Journal of Siberian Federal University. Humanities and Social Sciences. 2019;12(12):2155-2169. https://doi.org/10.17516/1997-1370-0525

Fedorova E.A., Afanasyev D.O., Demin I.S. et al. Development of the tonal-thematic dictionary EcSentiThemeLex for the analysis of economic texts in Russian. Prikladnaya informatika = Journal of Applied Informatics. 2020;15(6):58-77. (In Russ.). https://doi.org/10.37791/2687-0649-2020-15-6-58-77

Published
2023-06-20
How to Cite
FedorovaE., NevredinovA. and ChernikovaL. (2023) “The Impact of Sanctions on the Capitalization of Russian Companies: The Sectoral Aspect”, Journal of Corporate Finance Research / Корпоративные Финансы | ISSN: 2073-0438, 17(2), pp. 50-67. doi: 10.17323/j.jcfr.2073-0438.17.2.2023.50-67.
Section
New Research