Evolution of Factor Pricing Models and Their Application in the Russian Financial Market
Abstract
The article examines the evolution of asset pricing models in the stock market and explores their practical application in the Russian market. Despite the limited use of the capital asset pricing model and multi-factor models for forecasting stock return, their emergence has played a significant role in elucidating the nature of the equity risk premium and in identifying persistent return anomalies. Factor investment strategies have become the most important application of these models, as they are prevalent in mutual funds in major markets and available to private investors. The article analyzes the potential of factor investment strategies in the Russian stock market and presents an author’s methodology for constructing factor portfolios. Their advantage is evidenced by improved diversification compared to the primary indices of the Moscow Stock
Exchange and the ability to hedge through factor strategies across different stages of the business cycle. We conduct the analysis using a large sample of 891 stock issues from 2007 to 2024. Most of the 15 long-factor portfolios categorized by total shareholder return significantly outperform the MOEX-TR index at a moderate risk level. The effects of factor strategies are most pronounced in stocks from the first and second listing tiers; however, these effects are further amplified by including stocks from the third tier. Examination of factor strategies in corporate finance enhances the comprehension of dividend policy’s impact on total shareholder return and market capitalization growth. Increases in dividend yield often slow down the growth of capitalization, creating a dilemma in evaluating the performance of top management. The article justifies the
advantage of the total shareholder return as an indicator emphasizing that its growth can be achieved through either an increase in dividend yield or price appreciation, depending on the specifics of the issuer.
Downloads
References
Bodie Z., Kane A., Marcus A. Investments, 13th Edition. New York: McGraw Hill; 2024:1072.
Sharpe W. Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance. 1964;19(3):425–442. https://doi.org/10.2307/2977928 DOI: https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Lintner J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics. 1965;47(1):13–37. https://doi.org/10.2307/1924119 DOI: https://doi.org/10.2307/1924119
Treynor J. Toward a theory of market value of risky assets. Unpublished manuscript. SSRN. 1962. (accessed on 10.05.2025) URL: https://ssrn.com/abstract=628187
Ross S.A. The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory. 1976;13(3):341-360. https://doi.org/10.1016/0022-0531(76)90046-6 DOI: https://doi.org/10.1016/0022-0531(76)90046-6
Sharpe W.F. Alexander G.J., Bailey J.V. Charter 10. In: Investments. Fifth edition. New Jersey: Prentice Hall; 1995:1058.
Black F. Capital Market Equilibrium with Restricted Borrowing. Journal of Business. 1972;45(3):444-455. (accessed on 10.05.2025) URL: https://www.jstor.org/stable/2351499 DOI: https://doi.org/10.1086/295472
Mayers D. Nonmarketable Assets and Capital Market Equilibrium under Uncertainty. Studies in the Theory of Capital Markets: papers of the Conference on Modern Capital Theory, held at the University of Rochester in August, 1969, augmented by several closely related papers. New York: Praeger; 1972:223-248.
Merton R. An intertemporal capital asset pricing model. Econometrica. 1973;41(5):867–887. https://doi.org/10.2307/1913811 DOI: https://doi.org/10.2307/1913811
Lucas R. Asset Prices in an Exchange Economy. Econometrica. 1978;46(6):1429–1445. https://doi.org/10.2307/1913837 DOI: https://doi.org/10.2307/1913837
Amihud Y., Mendelson H. Asset Pricing and the Bid–Ask Spread. Journal of Financial Economics. 1986;17(2):223-249. https://doi.org/10.1016/0304-405x(86)90065-6 DOI: https://doi.org/10.1016/0304-405X(86)90065-6
Fama E.F., French K.R. The cross-section of expected stock returns. The Journal of Finance. 1992;47(2):427–465. https://doi.org/10.2307/2329112 DOI: https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
Fama E.F., French K.R. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics. 1993;33(1):3–56. https://doi.org/10.1016/0304-405X(93)90023-5 DOI: https://doi.org/10.1016/0304-405X(93)90023-5
Jegadeesh N., Titman S. Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance. 1993;48(1):65–91. https://doi.org/10.2307/2328882 DOI: https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
Amihud Y. Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets. 2002;5(1):31–56. https://doi.org/10.1016/S1386-4181(01)00024-6 DOI: https://doi.org/10.1016/S1386-4181(01)00024-6
Carhart M. On persistence in mutual fund performance. The Journal of Finance. 1997;52(1):57–82. https://doi.org/10.2307/2329556 DOI: https://doi.org/10.1111/j.1540-6261.1997.tb03808.x
Fama E.F., French K.R. A five-factor asset pricing model. Journal of Financial Economics. 2015;116(1):1–22. https://doi.org/10.1016/j.jfineco.2014.10.010 DOI: https://doi.org/10.1016/j.jfineco.2014.10.010
Bradford C. ESG Preferences, Risk and Return. European Financial Management. 2020;27(1):12-19. https://doi.org/10.1111/eufm.12295 DOI: https://doi.org/10.1111/eufm.12295
Fama E.F., French K.R. Value versus growth: The international evidence. The Journal of Finance. 1998;53(6):1975–1999. (accessed on 10.05.2025) URL: https://www.jstor.org/stable/117458 DOI: https://doi.org/10.1111/0022-1082.00080
Lettau M., Ludvigson S. Resurrecting the (C)CAPM: A cross-sectional test when risk premia are time-varying. Journal of Political Economy. 2001;109(6):1238–1287. https://doi.org/10.1086/323282 DOI: https://doi.org/10.1086/323282
Lakonishok J., Shleifer A., Vishny R.W. Contrarian investment, extrapolation, and risk. The Journal of Finance. 1994;49(5):1541–1578. https://doi.org/10.2307/2329262 DOI: https://doi.org/10.1111/j.1540-6261.1994.tb04772.x
Betermier S., Calvet L., Sodini P. Who Are the Value and Growth Investors? The Journal of Finance. 2017;72(1):5-46. https://doi.org/10.1111/jofi.12473 DOI: https://doi.org/10.1111/jofi.12473
López De Prado M.M. Causal Factor Investing: Can Factor Investing Become Scientific? 1st ed. Cambridge: Cambridge University Press; 2023. https://doi.org/10.1017/9781009397315 DOI: https://doi.org/10.1017/9781009397315
Barroso P., Santa-Clara P. Momentum Has Its Moments. Journal of Financial Economics. 2015;116(1):111–120. https://doi.org/10.1016/j.jfineco.2014.11.010 DOI: https://doi.org/10.1016/j.jfineco.2014.11.010
Ehsani S., Linnainmaa J.T. Factor Momentum and the Momentum Factor. SSRN. 2020. https://doi.org/10.2139/ssrn.3014521 DOI: https://doi.org/10.3386/w25551
Dash S., Mahakud J. Do asset pricing models explain size, value, momentum Effects? The case of an emerging stock market. Journal of Emerging Market Finance. 2014;13(3):217–251. https://doi.org/10.1177/0972652714550927 DOI: https://doi.org/10.1177/0972652714550927
Narayan K.P., Zheng X. Market liquidity risk factor and financial market anomalies: Evidence from the Chinese stock market. Pacific-Basin Finance Journal. 2010;18(5):509–520. https://doi.org/10.1016/j.pacfin.2010.07.002 DOI: https://doi.org/10.1016/j.pacfin.2010.07.002
Griffin J.M. Are the Fama and French factors global or country specific? The Review of Financial Studies. 2002;15(3):783–803. (accessed on 10.05.2025) URL: https://www.jstor.org/stable/2696721 DOI: https://doi.org/10.1093/rfs/15.3.783
Lischewski J., Voronkova S. Size, value and liquidity. Do they really matter on an emerging stock market? Emerging Markets Review. 2012;13(1):8–25. https://doi.org/10.1016/j.ememar.2011.09.002 DOI: https://doi.org/10.1016/j.ememar.2011.09.002
Sehgal S., Jain S. Short-term momentum patterns in stock and sectoral returns: Evidence from India. Journal of Advances in Management Research. 2011;8(1):99–122. https://doi.org/10.1108/09727981111129327 DOI: https://doi.org/10.1108/09727981111129327
Mikova E.S. The momentum effect in the dynamics of stock prices on the Russian market [dissertation].Moscow; 2014. (In Russ.). (accessed on 10.05.2025) URL: https://www.hse.ru/data/xf/2014/06/05/1323453942/dis%20mikova.pdf
Ivashkovskaya I.V et. al. Corporate financial solutions for emerging capital markets: an empirical analysis of Russian companies. Mosсow: INFRA-M; 2020. 281 p. (In Russ.)
Abramov A.E., Radygin A.D., Chernova M.I. Pricing models of shares of Russian companies and their practical application. Voprosy Ekonomiki. 2019;(3):48-76. (In Russ.) https://doi.org/10.32609/0042-8736-2019-3-48-76 DOI: https://doi.org/10.32609/0042-8736-2019-3-48-76
Tomtosov A. Overlapping portfolio holdings and unique sources of emerging market risk. Borsa Istanbul Review. 2024;24(1):201-217. https://doi.org/10.1016/j.bir.2023.12.003 DOI: https://doi.org/10.1016/j.bir.2023.12.003
Harvey C.R., Liu Y. Lucky factors. Journal of Financial Economics. 2021;141(2):413-435. https://doi.org/10.1016/j.jfineco.2021.04.014 DOI: https://doi.org/10.1016/j.jfineco.2021.04.014
Lettau M., Pelger M. Factors That Fit the Time Series and Cross-Section of Stock Returns. The Review of Financial Studies. 2020;33(5):2274-2325. https://doi.org/10.1093/rfs/hhaa020 DOI: https://doi.org/10.1093/rfs/hhaa020
Freyberger J., Neuhierl A., Weber M. Dissecting Characteristics Nonparametrically. The Review of Financial Studies. 2020;33(5):2326-2377. https://doi.org/10.1093/rfs/hhz123 DOI: https://doi.org/10.1093/rfs/hhz123
Feng G., Giglio S., Xiu D. Taming the Factor Zoo: A Test of New Factors. The Journal of Finance. 2020;75(3):1327-1370. https://doi.org/10.1111/jofi.12883 DOI: https://doi.org/10.1111/jofi.12883
Subrahmanyam A. The cross-section of expected stock returns: What have we learnt from the past twenty-five years of research? European Financial Management. 2010;16(1):27–42. https://doi.org/10.1111/j.1468-036X.2009.00520.x DOI: https://doi.org/10.1111/j.1468-036X.2009.00520.x
McLean D., Pontiff J. Does academic research destroy stock return predictability? The Journal of Finance. 2016;71(1):5–32. https://doi.org/10.1111/jofi.12365 DOI: https://doi.org/10.1111/jofi.12365
Harvey C.R., Liu Y., Zhu H. …and the cross-section of expected returns. The Review of Financial Studies. 2016;29(1):5–68. https://doi.org/10.1093/rfs/hhv059 DOI: https://doi.org/10.1093/rfs/hhv059
Kelly B.T., Kuznetsov B., Malamud S., et al. Artificial intelligence asset pricing models. NBER Working Paper № 33351. 2025. https://doi.org/10.3386/w33351 DOI: https://doi.org/10.3386/w33351
Hou K., Chen X., Zhang L. Replicating Anomalies. The Review of Financial Studies. 2018;33(5):2019-2133. https://doi.org/10.1093/rfs/hhy131 DOI: https://doi.org/10.1093/rfs/hhy131
Nard G.D., Zhao Z. Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices. Journal of Empirical Finance. 2023;72:23-35. https://doi.org/10.1016/j.jempfin.2023.02.003 DOI: https://doi.org/10.1016/j.jempfin.2023.02.003
Pedersen L.H. Big Data Asset Pricing 4: The Factor Zoo and Replication. SSRN. 2022. https://doi.org/10.2139/ssrn.4068793 DOI: https://doi.org/10.2139/ssrn.4068793
Arnott R., Harvey C.R., Kalesnik V., et al. Alice’s Adventures in Factorland: Three Blunders That Plague Factor Investing. The Journal of Portfolio Management. 2019;45(4):18–36. https://doi.org/10.3905/jpm.2019.45.4.018 DOI: https://doi.org/10.3905/jpm.2019.45.4.018
Jensen N.I., Kelly B.T., Pedersen L.H. Is There a Replication Crisis in Finance? The Journal of Finance. 2023;78(5):2465-2518. https://doi.org/10.1111/jofi.13249 DOI: https://doi.org/10.1111/jofi.13249
Jensen N.I., Kelly B.T., Semyon M., et al. Machine Learning and the Implementable Efficient Frontier. Swiss Finance Institute Research Paper № 22-63. 2024. https://doi.org/10.2139/ssrn.4187217 DOI: https://doi.org/10.2139/ssrn.4187217
Chen L., Pelger M., Zhu J. Deep Learning in Asset Pricing. SSRN. 2019. https://doi.org/10.2139/ssrn.3350138 DOI: https://doi.org/10.2139/ssrn.3350138
Avramov D., Cheng S., Metzker L. Machine learning vs. economic restrictions: Evidence from stock return predictability. Management Science, INFORMS. 2023;69(5):2587-2619. https://doi.org/10.1287/mnsc.2022.4449 DOI: https://doi.org/10.1287/mnsc.2022.4449
Arnott R.D., Harvey C. R., Markowitz H. A Backtesting Protocol in the Era of Machine Learning. The Journal of Financial Data Science. 2019;1(1):64–74. https://doi.org/10.3905/jfds.2019.1.064 DOI: https://doi.org/10.3905/jfds.2019.1.064
Damodaran A. Chapter 8. In: Investment Valuation. Tools and Techniques for Determining the Value of Any Asset. Second Edition. Hoboken, New Jersey: John Wiley & Sons; 2009. 312 p.
Abramov A.E., Dzhaokhadze E.D., Radygin A.D., et al. Total factor productivity of Russian companies: Assessments, trends, and dynamic factors. Voprosy Ekonomiki. 2023;(11):5-27. (In Russ.) https://doi.org/10.32609/0042-8736-2023-11-5-27 DOI: https://doi.org/10.32609/0042-8736-2023-11-5-27
Copyright (c) 2025 National Research University Higher School of Economics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.