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Abstract

Previous research has documented the limited capacity of visual working memory (VW M) for
color objects set at 3-5 items. Another line of research has shown that multiple objects can be
stored in a compressed form of ensemble. However, existing data is more likely to testify that
VWM can store no more than two such compressed units. But the nature of this discrepancy can
be methodological: VWM for ensembles was never tested using methods that are applied in the
research of VWM for objects. Here we have tested the capacity and precision of VWM for
objects and ensembles using two standard methods —change detection and continuous report
with a mixture model. We found that VWM for both types of units showed the similar capacity
and precision when critical psychophysical parameters, such as foveal density and area are con-
trolled. We also showed that this quantitative similarity between objects and ensembles is pro-
vided by a mechanism that represents each ensemble as a holistic VWM chunk as efficiently as
it represents any single object.

Keywords: visual working memory, object perception, ensemble perception.

Working memory is often referred
to as a system that actively maintains
and operates information necessary for
current goals and tasks (Baddeley,
1986; Baddeley & Hitch, 1974). One of
the most important attributes of work-
ing memory is its limited capacity, the
maximum number of separate represen-
tations that are concurrently main-
tained in the system. Across numerous
tasks, modalities, and conditions, the
average capacity is shown to be about

four units (Cowan, 2001), however, it
also shows some individual differences
between people (Luck & Vogel, 2013).

Methods for studying capacity and
precision of VWM for objects

W ithin a domain of visual working
memory (VWM), capacity limits are
also established. In their seminal work,
Luck and Vogel (1997) claimed that
three-four individual items can be
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stored in memory, and these items are
individual objects. They used a version
of a change detection paradigm (Pash-
ler, 1988; Phillips, 1974). The typical
change detection task consists of a
briefly presented sample containing a
variable number of objects, a blank
interval when the sample should be
stored in VWM, and a test display that
can be exactly the same as the sample
or having one item changed. The
observer should determine whether the
change is present or absent. Using
detection accuracy as a function of the
number of objects, an actual VWM
capacity can be estimated (Cowan,
2001). In their change detection study,
Luck and Vogel (1997) found that peo-
ple were equally good at detecting a
single change in a set of objects varying
in only one dimension (color) and at
detecting a change among the same
number of objects varying in four
dimensions (color, orientation, size,
and the presence/absence of a gap).
However, later research questioned
this conclusion showing that the capac-
ity to detect change strongly depends
on the heterogeneity and complexity of
material to be stored (Alvarez &
Cavanagh, 2004; Olson & Jiang, 2002;
Wheeler & Treisman, 2002).

In attempt to address the controver-
sial change detection data, Wilken and
Ma (2004) suggested using a continu-
ous report task as a strong addition to
the discrete response system used for
change detection. In their paradigm,
participants memorized a sample dis-
play and, after retention, had to adjust
the color of a single probed item from
that display to match the original color
of the sample item in the same location.
The distribution of errors (response
deviations from the true color) is then

analyzed, and its standard deviation is
accepted as a measure of VWM preci-
sion. Combining this method with
change detection, Wilken and Ma
(2004) concluded that VWM capacity
is limited by the noise increasing with
additional items and reducing the pre-
cision of each individual item. How-
ever, Zhang and Luck (2008) suggested
a different approach to the analysis of
error distribution based on mixture
modeling. Armed with this method,
Zhang and Luck (2008) separated two
types of errors: random guessing
(reporting values that are not in mem-
ory, which produces a uniformly dis-
tributed component of the model) and
an imprecise report ofan item that is in
memory (which produces clustering
errors around the true value in the form
of a normal distribution). Calculating
the standard deviation (SD) for a nor-
mally distributed component of the
model seems to be a more correct way
to estimate the precision ofan item that
is really stored in VWM. Also, the total
area of the random guess distribution
can be used to determine how many
items are in fact in memory that is its
exact capacity.

VWM for ensembles vs. objects

While capacity for individual
objects is severely limited (Cowan,
2001; Brady, Konkle, & Alvarez, 2011;
Luck & Vogel, 1997), there seem to be
strategies that the visual system uses to
bypass these limitations. One such
strategy can rely on natural regularities
of the stimulus to form compressed rep-
resentations of multiple objects. It is
shown in numerous experiments that
observers can successfully extract such
compressed representations in a form of
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ensemble summary statistics across va-
rious sensory (Alvarez & Oliva, 2009;
Ariely, 2001; Bauer, 2009; Chong &
Treisman, 2003; Dakin & Watt, 1997;
Watamaniuk & Duchon, 1992) and
even high-level perceptual (Haberman
& Whitney, 2007, 2009; Yamanashi
Leib, Kosovicheva, & Whitney, 2016)
dimensions. The phenomenon of en-
semble summary statistics consists in
reasonably rapid (Chong & Treisman,
2003; Robitaille & Harris, 2011;
Whiting & Oriet, 2011) and precise
(Alvarez, 2011) judgment of the aver-
age parameter of multiple objects. The
idea of VWM compression using
ensemble summaries implies that
observers do not memorize the full
number of objects with great precision
but can retrieve some information
about any object using the general
summary (Brady & Alvarez, 2011;
Corbett, 2017). The quality of retrieval
would be inevitably worse than when
each single object is encoded. But still,
the estimates would be better than mere
random guessing even when the num-
ber of objects overcomes the known
limits of VWM (Corbett, 2017).

When individual items become
organized into an ensemble, they are
likely to form a single unit for attention
and working memory (Corbett, 2017;
Im & Chong, 2014; Im, Park, & Chong,
2015), which means that the quality of
ensemble encoding marginally depends
on the number of individuals within
(Ariely, 2001, 2008; Attarha & Moore,
2015; Attarha, Moore, & Vecera, 2014,
Chong, Joo, Emmanouil, & Treisman,
2008; Robitaille & Harris, 2011;
Utochkin & Tiurina, 2014; but see
Marchant, Simons, & De Fockert,
2013; Maule & Franklin, 2016; Myczek
& Simons, 2008; Simons & Myczek,
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2008). However, the number of such
ensemble units can be limited.

Some studies addressed the issue of
VWM capacity for multiple objects
organized in ensemble fashion. Chong
& Treisman (2005) were the first to
show that ensemble features (mean
sizes) can be extracted at one time from
at least two spatially overlapping sets.
However, they did not test more than
two such sets. Im and Chong (2014)
moved further and tested an ability to
estimate the mean sizes of up to five
ensembles. They found that the accura-
cy steadily declines starting with three
sets. This result shows that the capaci-
ty limit is very low —probably no more
than two. Attarha and Moore (2015;
Attarha, et al., 2014) presented four
ensembles either simultaneously or
sequentially (two at a time) and found
that the sequential method (when
VWM is loaded by only two objects at
one time) provides better performance,
which is also consistent with the limit-
ed VWM capacity for ensembles of
about two units. This estimate is sup-
ported by the data from experiments on
approximate estimation of numerosi-
ty — another statistical summary of
multiple objects. Halberda, Sires, and
Feigenson (2006) reported that their
participants could estimate an approxi-
mate number of dots in two color sub-
sets without loss in precision, even
when they did not know in advance
which subsets they would be asked
about.

Further experiments showed that
the limit of ensemble memory probably
arises not from limits in the “processor”
computing ensemble properties, such as
the mean feature or numerosity. In the
most reported studies (except for
Attarha & Moore, 2015, and Attarha et
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al., 2014), ensembles were presented as
spatially overlapping subsets, with
objects from one subset intermingling
with objects from other subsets. Such a
way of presentation makes ensembles
different from single items and spatially
grouped sets because they have no clear
spatial boundaries that would provide
the “objecthood” of each subset (Trick
& Pylyshyn, 1993). Using such stimuli,
Poltoratski and Xu (2013) replicated
the no-more-than-two finding from
Halberda et al. (2006) and then, using
the partial report, showed that this
limit reflects a failure to encode more
than two colors (subset-defining fea-
tures) to VWM rather than computa-
tional limits of number estimation.
Earlier, Watson, Maylor, & Bruce
(2005) came to a similar conclusion
and similar capacity estimate when
asked participants to report the num-
ber of color subsets and measured their
reaction time.

Our study

From the previous section we see
that evidence accumulated from differ-
ent paradigms converge to provide a
conclusion that representing ensembles
in VWM is capacity-limited, and that
this limit is very severe - probably
around two ensembles at one time.
Here, we see a discrepancy between the
estimated capacity for ensembles and
individual objects. Given that in most
of the experiments ensembles were
defined by colors, ensemble capacity
seems substantially lower than object
capacity that is set closer to three-four
(Luck & Vogel, 1997) or even five
(Alvarez & Cavanagh, 2004) colors.

In our study, we addressed the dis-
crepancy between the estimated capac-

ities of VWM for ensembles and indi-
vidual objects. We see a very important
problem in that VWM for ensembles
was never tested by the standard meth-
ods typically used in contemporary
studies of VWM for objects, such as
change detection and continuous
report. The tasks used in the ensemble
studies (see previous section) are dif-
ferent in terms of their demands -
report the average (Attarha & Moore,
2015; Attarha et al.,, 2014; Chong &
Treisman, 2015; Im & Chong, 2014) or
the number (Halberda et al., 2006;
Poltoratski & Xu, 2013; Watson et al.,
2005), which probably involves more
complex operations than just retention
and retrieval of multiple colors. Partial
color reporting used by Poltoratski and
Xu (2013) is closer to standard VWM
tests but also somewhat more difficult:
while both change detection and con-
tinuous report keep the spatial refer-
ence of a tested item, Poltoratski and
Xu’s (2013) method did not, which
could complicate retrieval. Moreover,
the precision of ensemble encoding was
never measured, since the continuous
report paradigm has never been applied
to ensembles in a way as it is applied to
objects.

Our aim, therefore, is to test VWM
for both objects and ensembles using
exactly the same standard methods and
directly compare the corresponding
parameters. In Experiment 1, we tested
VWM for displays consisting of one to
five individual objects, each having a
unique color, as compared to displays
consisting of one to five overlapping
ensembles, each in turn including sev-
eral objects ofa common color. In Expe-
riment 2, we repeated Experiment 1
controlling for the total area of objects
and ensembles. In Experiment 3, we
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also repeated Experiment 1, but this
time we controlled display density and
eccentricity from the fovea. Finally, in
Experiment 4, we tested whether VWM
parameters for ensembles can be ac-
counted for by a sampling strategy that
implies selective encoding of a few indi-
vidual representatives instead of en-
sembles.

Experiment 1
Method
Participants

Twelve psychology students of the
Higher School of Economics (11 fema-
le; age: M = 19.45 years, SD = 0.52)
took part in the experiment for extra
course credits. All participants report-
ed having normal color vision, normal
or corrected to normal visual acuity,
and no neurological problems. Before the
beginning ofthe experiment, they signed
an informed consent form. One partici-
pant’s data were excluded from analysis
because she showed nearly 100% guess
rate in the change detection task.

Apparatus and stimuli

Stimulation was developed and pre-
sented using PsychoPy (Pierce, 2007)
for Linux. Stimuli were presented on a
standard VGA monitor in a refresh fre-
quency of 75 Hz with 1024X768-pixel
spatial resolution. Stimuli were presen-
ted against a homogeneous gray field.
Participants sat at approximately 47 cm
from the monitor. From that distance,
the screen subtended at approximately
44.7X34.2 degrees of visual angle.

Sample displays. Sets of color circles
were generated within a square region
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subtending 24.3 degrees and having a
center at a fixation point. The diameter
of each circle randomly varied between
0.4 and 0.7 degrees. The circles were
randomly located within this square
region with the only restriction being
that they could not overlap. For testing
memory of individual objects, one to
five circles could be presented, each
having a unique color.

For testing memory for ensembles,
one to five sets of circles could be pre-
sented. Each set consisted of six to
eight circles sharing a common color.
As all circles were randomly located in
the space, the color sets overlapped,
that is, circles of one color were inter-
spersed with the circles of different col-
ors (except for displays where only one
subset was present).

We used an HSV (hue-saturation-
value) palette for coloring the circles in
our displays. Both saturation and value
were set at their maximum 1, providing
that only the hue was variable. We used
the following algorithm for assigning
hues to objects or sets. For each display,
a random hue was first picked from the
HSV color wheel and assigned to one of
the sets. For the rest of the objects or
sets (if more than one is presented),
hues rotated by n*60 + 15 degrees
away from the initial one (where nis an
integer multiplier from 2 to 5) could be
assigned. This algorithm provided dis-
tinctiveness between any two colors no
less than at least 30 degrees along the
HSV color wheel.

Testdisplays. In the change detection
task, test displays could either be the
exact copies of samples or having one
object or one set changed in color. In
the continuous report task, test displays
originally included the outlines of the
sample circles without color. One



740 Yu.A. Markov, N.A. Tiurina, YuM. Stakina, 1.S. Utochkin

probed object or set had thicker out-
lines. This outline layout was sur-
rounded by a hue color wheel (internal
and external diameters were 27.3 and
31.4 degrees, respectively) used to
select the hues for adjusting the color
of the probed object or set.

Procedure

During the experiment, each partic-
ipant underwent two types of tasks,
each having “object” and “ensemble”
versions: (1) change detection for
objects, (2) change detection for en-
sembles, (3) continuous report for
objects, and (4) continuous report for
ensembles. The order of the tasks var-
ied across participants. Each task start-
ed with a short practice block.

Change detection. In the change
detection task (Figure 1), participants
were instructed to memorize the colors
of objects or sets presented in sample
displays and report whether one of the
colors had changed in the test display.

Each trial started with a presentation of
a sample display for 300 ms. A 1,000-ms
blank interval then followed requiring
the participants to retain the sample in
memory. After the blank interval, a test
display appeared until response or
5,000 ms, whichever occurred earlier.
For response, a standard computer key-
board was used. Participants had to
press <I> button if they saw a change
between the sample and test displays,
or <s> if they did not see any change.
There was a 0.5 probability of change
presence. Feedback was provided after
the response whether it had been cor-
rect or incorrect. The feedback stayed
on the screen until the participant
pressed a space bar on the keyboard to
start the next trial.

Continuous report. In the continuous
report task (Figure 2), participants also
had to memorize the colors of objects or
sets in a sample presented for 300 ms.
After a 1,000-ms blank interval, a test
display, as described above, appeared.
Clicking on the color wheel with a

Figure 1

Change detection task for objects (A) and ensembles (B)
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computer mouse the participants had
to pick the hue corresponding to the
hue of the probed object or set. The
first click on the color wheel caused the
outline probed object or set to take the
picked hue. The participants could
then correct their response by another
click or dragging the mouse. To confirm
their final response, the participants
had to press the space bar. Feedback
was then presented showing how close
participant’s response was to the cor-
rect answer. The feedback was provid-
ed by showing two color circles: the
color of the left circle corresponded to
the true color of a sample, and the color
of the right circle corresponded to the
participant’s response; in addition, a
black arrow indicated the true sample
color on the color wheel and a white
arrow indicated the participant’s
response, so participants could see the
angular distance between their respon-
ses and correct responses. The feedback
stayed on the screen until the partici-
pant pressed a space bar on the key-
board to start the next trial.
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Design and analysis

Two factors were manipulated in
this experiment. The first one was Unit
Type (two conditions: objects wvs.
ensembles). The second one was Set
Size, the number of objects or ensembles
on the screen (five conditions: one to
five). We used 50 trials per cell ofthe fac-
torial design. Therefore, in each of two
tasks, every participant took 2x5x50 =
= 500 trials.

In the change detection task, we
measured the capacity of VWM in each
of the set sizes and unit types using
Cowan’s K formula (Cowan, 2001): K =
= (p(Hit) - p(FA))*N, where K is an
average estimate of the number of units
stored in memory in a given condition,
p(Hit) is the probability of “hits” (cor-
rect detection when the change is pres-
ent), p(FA) is the probability of “false
alarms” (false detection when the
change is absent), N is the set size.

For the continuous report task,
errors were calculated in each trial. The
error is an angular difference between

Figure 2

Change detection task for objects (A) and ensembles (B)
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the participant’s response and the true
sample hue of a probed object or ensemble.
We then analyzed the distribution of
errors in each condition using the mixture
model as described by Zhang and Luck
(2008). The model separates two basic dis-
tributional components: a component of
the von Mises distribution (which reflects
responses based on reporting colors that
are in memory) and a component of the
uniform distribution (which corresponds
to random guess reflecting the absence ofa
tested item in memory). We ran mixture
models using MemToolBox for Matlab
(Suchow, Brady, Fougnie, & Alvarez,
2013). From the mixture models, we
derived two important parameters. The
standard deviation (SD) of the von Mises
componentwas the measure of VWM pre-
cision for colors that are in memory The
area of the uniform component reflecting
the overall probability of random guess
Pguess was used to calculate the VWM
capacity: C = (1 —Pguess)*N, where Cis
an average estimate ofthe number of units
stored in memory, (1 —Pguess) is the prob-
ability that a tested object or ensemble is
in memory N is the set size.

Results

In many participants, the mixture
model failed to converge for the set size
of five items, which shows that this
condition could probably be too diffi-
cult. We therefore decided not to
include this set size into analysis in this
and the following experiments.

The change detection task (Figure
3A) yielded no significant difference
between object and ensemble capacities
(F(1, 10) = 2.217,p = 0.167, ~2p= 0.181).
The effect of the set size was significant
(F(3,30) =43.386,p < .001, =0.813).
There were significant differences bet-
ween the set size = 1, and all the rest of
the conditions (ps < 0.001, Bonferroni
corrected). The difference was also sig-
nificant between the set size = 2 and
the set sizes = 3 and 4 (p < 0.001,p =
= 0.003, Bonferroni corrected). The set
sizeXunit type interaction was not sig-
nificant (F(3, 30) = 1.106, p = 0.362,
< =0.100).

The continuous report task (Figure
3B-C) showed a significant difference
between object and ensemble capacities

Figure 3

Capacity and SD data from Experiment 1. A —change detection task;
B, C —continuous report task. Error bars denote 95% ClI
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and precisions (F(1, 10) = 23.520, p <
0.001, ~2p=0.702; F(1, 10) =5.805,p =
=0.037, *2p = 0.367, respectively). The
effect of set size for capacity again was
significant (F(3, 30) = 18.751, p <
0. 001, ~2p = 0.652). There were signifi-
cant differences between set size = 1
and all of the rest set sizes (p’s < 0.001,
Bonferroni corrected). The set sizeX unit
type interaction for capacity was
significant (F(3, 30) = 8.183,p < 0.001,
-p2p= 0.450). There were significant dif-
ferences between object capacity and
ensemble capacity for set size = 3and 4
(p = 0.005, p = 0.003). For precision,
there were no effects of set size (F(3,
30) = 1.728,p = 0.182, "2p= .147) and
of set sizeXunit type (F(3, 30) = 2.153,
p = 0.114, ~2p = 0.177).

Experiment 2

As ensembles were more numerous
than individual objects in Experiment 1,
they were distributed more densely on
the screen providing more chance for
any region to be filled with some items.
This could lead to a higher probability
of at least a few items falling into the
fovea, which is important for precise
encoding of color. This could explain
why we observed a higher capacity in
the ensemble condition of Experiment
1 To address this issue, in Experiment
2 we equated the foveal density of
objects and ensembles.

Method
Participants
Twelve psychology students of the
Higher School of Economics (10 fe-

male; age: M = 19.58 years, SD = 0.79)
took part in the experiment for extra
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course credits. All participants reported
having normal color vision, normal or
corrected to normal visual acuity, and
no neurological problems. Before the
beginning of the experiment, they
signed an informed consent form. Three
participants’ data were excluded from
analysis because they showed a nearly
100% guess rate in set size = 3 and 4.

Apparatus and stimuli

Apparatus and stimuli were the
same as in Experiment 1, but with one
important exception. In the individual
object condition, location coordinates
for the circles were generated within a
narrower region around fixation (4.59
degrees). This provided approximately
the same foveal density as in the ensem-
ble condition, for which coordinates
were generated within the same area as
in Experiment 1

Procedure, design, and analysis were
exactly the same as in Experiment 1

Results

Change detection (Figure 4A) again
showed no difference between object
and ensemble capacities (F(1, 8) = 4.973,
p = 0.056, ~ 2p= 0.383). The effect of set
size was significant (F(3, 24) = 32.836,
p < 0.001, ~2p= .804). There were signi-
ficant differences between the set size = 1
and all ofthe rest conditions (p’s < 0.001,
Bonferroni corrected) and also bet-
ween conditions with the set size = 2,
and conditions with the set size = 3 and
4 (p = 0.032,p = 0.001, Bonferroni cor-
rected). The set sizeXunit type interac-
tion was not significant (F(3, 24) = 1.244,
p =0.316, ~2p = 0.135).

The continuous report task (Figure
4B) showed a significant difference
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Figure 4

Capacity and SD data from Experiment 2. A —change detection task;
B, C —continuous report task. Error bars denote 95% ClI

between object and ensemble capacities
(F(1, 8) =20.026,p =0.002, ~2p= 0.715).
The effect of the set size was significant
(F(3,24) = 17.182,p < 0.001,~ =0.682).
There were significant differences be-
tween condition with the set size = 1,
and all the rest conditions (p’s < 0.001,
Bonferroni corrected). The set sizeX unit
type interaction was significant (F(3,
24) = 6.283, p = 0.003, “2p = 0.440).
There was a significant difference
between object and ensemble capacities
for the set size = 3 (p < 0.001). For pre-
cision, no significant effects of the set
size (F(3, 24) = 0.842,p = 0484, =
= 0.095), unit type (F(1,8) = 1.821,p =
= 0.214, "2p= 0.185), or set sizeXunit
type (F(3, 24) = 0.654, p = 0.588, *"2p=
= 0.076) were found (Figure 4C).

Experiment 3

In this experiment we addressed
another potential psychophysical con-
found that could arise between individ-
ual objects and ensembles in Experi-
ment 1. As ensembles were more nu-
merous, their total area was larger than
the area of the objects. Here we equat-

ed the areas between objects and
ensembles.

Method
Participants

Twelve psychology students of the
Higher School of Economics (10 fe-
male; age: M = 19.41 years, SD = 0.68)
took part in the experiment for extra
course credits. All participants report-
ed having normal color vision, normal
or corrected to normal visual acuity,
and no neurological problems. Before
the beginning of the experiment, they
signed an informed consent form.

Apparatus and stimuli

Apparatus and stimuli were the
same as in Experiment 1, but with
another important exception. In the
individual object condition, we multi-
plied the diameters of circles originally
used in Experiment 1by 7, so that the
new diameters ranged between 0.978
and 1.738 degrees. This led the average
area of the individual circles to become
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seven time as big as the average area of
the circles in Experiment 1 In the
ensemble condition, areas remained the
same as in Experiment 1. As the aver-
age number of circles in each ensemble
was seven, their total area was approxi-
mately equal to the area of the magni-
fied individual objects.

Procedure, design, and analysis we-
re exactly the same as in Experiment 1

Results and discussion

As in previous experiments, change
detection (Figure 5A) yielded no sig-
nificant difference between object and
ensemble capacities (F(1, 11) = .015, p
= .906, " 2p= .001). The effect of set size
was significant (F(3, 33) = 74.549, p <
.001, ~2p= .871). There were significant
differences between the set size = 1and
all of the rest conditions (ps < 0.001,
Bonferroni corrected). And also be-
tween conditions with set size = 2, and
conditions with the set size = 3 and 4
(p < 0.001, p < 0.001, Bonferroni cor-
rected). The set sizeXunit type interac-
tion was not significant (F(3, 33) =
= 0.608, p = 0.615, ~2p= 0.052).
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The continuous report task (Figure
5B) showed a significant difference
between object and ensemble capacities
(F(1, 11) = 8.257,p = 0.015, *2p= 0.492).
The effect of the set size was significant
(F(3,33) =38.700,p < 0.001,~ =0.779).
There were significant differences
between condition with the set size = 1,
and all the rest conditions (p’s < 0.001,
Bonferroni corrected). The setsizeX unit
type interaction was significant (F (3,
33) = 6.036, p = 0.002, ~ = 0.354).
There was a significant difference
between object and ensemble capacities
for the set size = 3 (p < 0.001). For pre-
cision, no significant effects of set size
(F(3,33) = 2.620,p = 0.067, ~2p= 0.192),
unit type (F(1, 11) = 9.946, p = 0.009,
N2p = 0.475), or set sizeXunit type (F(3,
33) = 1.968, p = 0.138, *"2p = 0.152)
were found (Figure 5C).

Experiment 4

In Experiments 2 and 3 we con-
trolled for physical stimulus factors,
such as foveal density and area, and
found basically the same VWM param-
eters for both objects and ensembles.

Figure 5

Capacity and SD data from Experiment 3.
A change detection task; B, C —continuous report task. Error bars denote 95% ClI
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This result might lead us to conclude
that VWM treats ensembles as exactly
the same units as individual objects.
However, does this mean that an
ensemble is indeed encoded as a single
unit in its entirety? The answer is not
obvious. It is possible that only a limit-
ed sample of individuals is picked out
from the entire number of multiple
objects and encoded into VWM, while
other ensemble members are not
encoded at all. In Experiment 4, we
externally controlled the allocation of
attention towards individual represen-
tatives of ensembles to test whether
they bias VWM in favor of the corre-
sponding ensembles. To manipulate the
allocation of attention, we used a mod-
ification of the abrupt onset paradigm
when a single item (Yantis & Jonides,
1984) or a group of items (Jiang, Chun,
& Marks, 2002) captures involuntary
attention by asynchronous presenta-
tion with the rest of a set. Our main
idea was to compare VWM parameters
for ensembles whose individual repre-
sentatives are attended with ensembles
whose representatives are unattended.
In Experiment 4, we tested it only on
the continuous report task for ensem-
bles.

Method
Participants

Eighteen psychology students ofthe
Higher School of Economics (16 fe-
male; age: M = 19.44 years, SD = 0.78)
took part in the experiment for extra
course credits. All participants report-
ed having normal color vision, normal
or corrected to normal visual acuity,
and no neurological problems. Before
the beginning of the experiment, they

signed an informed consent form. Six
participants’ data were excluded from
analysis because they showed nearly a
100% guess rate in all conditions.

Apparatus and stimuli

Apparatus was the same as in
Experiment 1 We used only one subset
of stimuli from Experiment 1, namely,
those used for the continuous report
task and the ensemble condition. The
set size was fixed at five ensembles.

Procedure, design, and analysis

In general, the procedure was the
same as described in the Continuous
report section of Experiment 1
However, there was an important addi-
tion. 200 ms before the entire sample
presentation, a subset of one to four
objects from that sample appeared and
stayed until the sample offset (Figure 6).
Each object in a subset had a unique
color. After the 1,000-ms retention
interval, the observers had to set the
color of a probed ensemble. Critically,
the probed ensemble could be either
one that had a representative in the
precued subset, or one that had no such
representative.

In this experiment, we manipulated
two factors. The first was Sample Size,
the number of the cued circles (1, 2, 3,
or 4). The second factor was Represen-
tativeness: a representative sample
always included one item from a subse-
quently probed ensemble; a non- repre-
sentative sample had no members ofthe
probed ensemble. Data were analyzed
using the mixture model (Zhang &
Luck, 2008). As in the previous experi-
ments, capacity (C) and precision (SD)
were our target parameters.
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Figure 6

Time course of trial in Experiment 4

Results

The effect of set size, representative-
ness, and set sizeXrepresentativeness
interaction were not significant for ca-
pacity and precision (capacity: F (3, 33) =
=0.913,p = 0.445, ~2p=0.077; F (1, 11) =
=4.475,p = 0.058, 2 =0.289; F (3, 33) =
= 1.237,p = 0.312, ~2p=0.101; precision:
F (3, 33) = 1.160,p = 0.340, ~ = 0.095;
F(1, 11) = .033,p = 0.858, *2p= 0.003;
F(3, 33) =.821,p = 0.492, 2= 0.069;
Figure 7).

General Discussion

In the series of experiments report-
ed here we investigated VWM for two
types of perceptual units - individual
objects and spatially overlapping
ensembles. The study was inspired by a
discrepancy in the literature about the
capacities of VWM for individual
objects (Alvarez & Cavanagh, 2004;
Luck & Vogel, 1997, 2013; etc.) and
ensembles (Attarha & Moore, 2015;

Attarha et al.,, 2014; Halberda et al,
2006; Im & Chong, 2014; Poltoratski &
Xu, 2013; Watson et al., 2005). One
possible concern about this discrepan-
cy is that it could be caused by differ-
ences in methodologies used for meas-
uring the capacity in the studies of
object VWM and ensemble VWM. In
our study, we compared VWM capaci-
ties for objects and ensembles using
exactly the same methods. These meth-
ods are recognized as standard in the
field of object VWM - change detec-
tion (Luck & Vogel, 1997) and contin-
uous report (Wilken & Ma, 2004) with
the mixture model (Zhang & Luck,
2008).

In general, our findings support an
idea that VWM has approximately the
same capacities for individual objects
and ensembles. Moreover, ensembles
tend to be encoded with even higher
precision than individual objects with
exactly the same properties as ensemble
constituents (Experiment 1). This
demonstrates a sort of a redundancy
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Figure 7

Capacity and SD data from Experiment 4. Error bars denote 95% CI

B representative
D non-representative

Sample size

gain caused by object numerosity
(Utochkin, 2016). However, when
objects and ensembles are equated in
their low-level properties, such as
foveal density or area, precision
becomes the same for both objects and
ensembles (Experiments 2 and 3).

Low VWM capacity for individual
objects

One result of our study seems to be
a bit challenging given the data
described in the literature. Expe-
riments with change detection as the
basic paradigm to measure VWM
capacity for objects usually show
greater limit numbers - at least three-
four (Awh, Barton, & Vogel, 2007;
Luck & Vogel, 1997) or even almost
five (Alvarez & Cavanagh, 2005) items
when observers are asked about the
color. Using the same method, we came
to much lower estimates: in our
Experiments 1-3, change capacity did
not exceed two items.

30-

12 3 4

Sample size

One possible explanation for this
rather big difference between our esti-
mate of change detection capacity and
those reported in the literature is color
variability. In many of the previous and
most cited studies (e.g. Alvarez &
Cavanagh, 2004; Luck & Vogel, 1997),
their authors used fixed sets of colors
across all trials. In contrast, in our study,
the set of used colors changed randomly
from trial to trial. From other studies, it is
known that observers can rather effi-
ciently use stimulus regularities to inflate
the capacity of VWM (Brady, Konkle, &
Alvarez, 2009). Having a fixed color set,
observers in the classical studies could
also expand their useful memory set size
showing higher capacities. However, this
expansion could not be explained by pure
VWM, it had something to do with some
type of long-term memory as well. In our
experiments, observers could not form
any reliable long-term trace that would
help them in any given trial, so they had
to rely solely on a current working mem-
ory trace.
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The idea that VWM capacity for
objects is low because of the between-
trial color variation gains important
support from the continuous report
data - both from our experiments and
the existing literature. It can be seen
that using exactly the same stimulation
but a different report method we came
to the same capacity estimate of about
only two individual object colors.
Importantly, other studies using the
continuous report with subsequent
mixture modeling show approximately
the same estimates: while the probabil-
ity of storing an item in memory is near
1.0 for one or two items (Zhang &
Luck, 2008), it drops down to approxi-
mately .75-.83 for three items
(Fougnie, Asplund, & Marois, 2010)
that corresponds to the capacity
around 2.25-2.49 items, which is fairly
below the magic number 4 (Cowan,
2001). In these continuous report stud-
ies, the colors were also selected ran-
domly in each trial. Therefore, it is pos-
sible that color regularity could be an
important factor that led to higher
capacity estimates in the previous
change detection studies. If this is the
case then the true VWM capacity for
objects can be even more limited than
was thought (Cowan, 2001; Luck &
Vogel, 1997, 2013). Of course, further
research is necessary to test the role of
stimulus regularity in VWM capacity.

Sampling vs. exhaustive ensemble
encoding

Another important question, which
we addressed after reporting basically
similar capacities and precision of
object and ensemble VWM, was
whether ensemble encoding can be pro-
vided by object encoding. Ifthe observ-
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er shows exactly the same performance
in both conditions, is it possible that
VWM always encodes a few objects
within its limited capacity? Or does it
enlarge the unit and encode the ensem-
ble in its entirety, as if it encoded a sin-
gle object in the object condition? We
refer the first and the second hypothe-
ses to as sampling and exhaustive
encoding, respectively. The experimen-
tal distinction between these two
hypotheses seems very important for
our study, given the debate about sam-
pling vs. exhaustive coding in ensemble
perception (Allik, Toom, Raidvee,
Averin, & Kreegipuu, 2013; Alvarez,
2011; Ariely, 2008; Chong et al., 2008;
Maule & Franklin, 2016; Marchant et
al., 2013; Myczek & Simons, 2008;
Simons & Myczek, 2008; Utochkin &
Tiurina, 2014).

In Experiment 4, we directly manip-
ulated local samples that our observers
were likely to encode with high priori-
ty, because we attracted their exoge-
neous attention to those samples. We
asked whether these samples would
bias encoding towards ensembles
whose representatives are in the sam-
ples and/or away from ensembles that
are not represented in the sample. We
found no evidence that sample repre-
sentativeness has any effect on capacity
or precision. Even when the observers
did not pay exogeneous attention to
any item from a probed ensemble, they
remembered this ensemble as efficient-
ly as those whose representatives had
been attended. This result allows us to
rule out sampling as a potential expla-
nation for equal VWM parameters in
the object and ensemble conditions of
Experiments 1-3. Even though atten-
tional salience of the cued object sam-
ple (Jiang et al.,, 2002) could let the
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members of that sample enter VWM
with higher probability, this could only
affect their encoding among other indi-
vidual objects, when they are treated as
individuals. However, what happens at
the individual object level seems to
keep ensemble coding intact. We con-
clude, therefore, that each color-
defined ensemble is likely to be coded
as a unitary chunk, and the efficiency of
its encoding does not differ substantial-
ly from the efficiency of encoding the
objects. It even occurs despite low
“objecthood” of those ensembles: they
had no such internal unity since the
spatial organization of ensemble mem-
bers was poor.

Conclusion

In our study we asked whether indi-
vidual objects and ensembles (multiple
objects with poor objecthood) are
encoded as similar or different units in
VWM. Our question was motivated by
a discrepancy in the existing quantita-
tive data about VWM capacity for
objects and ensembles. Using the same
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O6BEM M TOUHOCTb 3pUTESIbHOM paboyeli NamMsATH Ha 06bEKTbI 1 aHcamMbn
HO.A. Mapkos", H.A. TiopuHa", O.M. CtakuHa", N.C. YTOUKUH"

aHauuoHanbHbIi MccneaoBaTeNbCKNA YHUBEPCUTET «Bbicllas Lkona 3KoHoMMKM», 101000, Poccus,
Mocksa, yn. MacHuukas, g, 20

Pe3tome

MpeablayLwue nccnefoBaHNs NMOKasbiBakOT, YTO 06beM 3puTenbHON paboyeil naMaTy Ha LiBeTa
06bEKTOB OrpaHWYeH 1 paBeH NPUMepHO 3-5 anemeHTam. [aHHble, NONYYeHHbIE B ApYTrnX Uccne-
[0BaHMAX, YTBEPXKAAIOT, YTO MHOXECTBEHHbIE 06BEKTbI MOTYT XpaHUTbCA B hopMe 6onee KOM-
NaKTHOro NpeSCcTaB/eHns —3pUTeNbHOro aHcamb6s. B T0 e BpeMs nccnefoBaHUsA 3puTeNbHbIX
aHcamb6ieil MoKa3bIBalOT, YTO B 3pMUTeNbHOM paboyeli NamAaT OLHOBPEMEHHO MOTYT XPaHUTbLCA
TO/NbKO ABa aHcambns. BO3MOXHO, AaHHble pa3nuumns cBA3aHbl CO CMOCO6aMn 3MepeHns xapak-
TEPUCTUK 3pUTEeNbHOI paboueii NamaTi, NCNOMb30BaHHbLIMU B Pa3NNYHbIX CCIEeA0BaHUAX: 3an0-
MWHaHWe aHcaMbneli He TeCTMPOBANOCh NPU NOMOLLM METOAOB, MCMOMb3YEMbIX ANS UCCNef0Ba-
HWUA NaMATU Ha 06bEKTbI. Mbl M3Mepuan 06beM M TOUHOCTb 3pUTENLHO pabouei NamMaT 4ns
06bEeKTOB 1 aHcambneld, NCNoNb3ys ABa CTaH4APTHbIX MeTofa — MeTo[ 06HapYXXeHNs n3meHe-
HWUIA 1 MeTof rpafyasbHOro 0T4eTa C MCMO/b30BaHMEM Mogenein cmeweHus (Mixture model).
Mbl 06Hapy>unn, YTo 06BEM 1 TOUHOCTb 3pUTENbHON paboyeil NamMaTu Ha 06beKTbI M aHcambn
OAMHAKOBbI, MPYU KOHTPO/IE OCHOBHbLIX NCMXOPU3NYECKMX NapaMeTpoB: hoBeaslbHOW MI0THOCTH
1 NNowWaamn npeabaBneHns aHcambnein n 06beKToB. Mbl TaKXXe MOKas3anm, YTO CXOACTBO 06BEMOB
3puUTeNbHON paboueil NnaMATn Ans 06beKTOB M aHcambeld obecneymBaeTcs MexaHU3MOM, N03BO-
NAOWMUM XpaHWTb aHCcamb6/1b B 3puTeNbHOM paboyelt namMaTh B JopMe LieNoCTHOM penpeseHTa-
LMK, YTO aHANIOMMYHO 3 (HEKTUBHOMY XPaHEHWIO MHGOPMaL UK 0 eANHNYHbIX 06bEKTAX.
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