
Psychology. Journal of the Higher School of Economics.
2017. Vol. 14. N 4. P. 735-755. DOI: 10.17323/1813-8918-2017-4-735-755

THE CAPACITY AND PRECISION OF VISUAL 
WORKING MEMORY FOR OBJECTS 

AND ENSEMBLES

YU.A. MARKOVa, N.A. TIURINAa, YU.M. STAKINAa, I.S. UTOCHKINa

a National Research University Higher School o f Economics, 20 Myasnitskaya Str., Moscow, 101000, 
Russian Federation

A bstract
Previous research has documented the limited capacity of visual working memory (VW M ) for 
color objects set at 3 -5  items. Another line of research has shown th a t multiple objects can be 
stored in a compressed form of ensemble. However, existing data is more likely to  testify tha t 
VW M can store no more than two such compressed units. But the nature of this discrepancy can 
be methodological: VW M for ensembles was never tested using methods th a t are applied in the 
research of VW M  for objects. Here we have tested the capacity and precision of VW M for 
objects and ensembles using two standard methods — change detection and continuous report 
w ith a mixture model. We found th a t VW M for both types of units showed the similar capacity 
and precision when critical psychophysical parameters, such as foveal density and area are con­
trolled. We also showed th a t this quantitative similarity between objects and ensembles is pro­
vided by a mechanism th a t represents each ensemble as a holistic VW M chunk as efficiently as 
it represents any single object.

Keywords: visual working memory, object perception, ensemble perception.

Working memory is often referred 
to as a system that actively maintains 
and operates information necessary for 
curren t goals and tasks (Baddeley, 
1986; Baddeley & Hitch, 1974). One of 
the most important attributes of work­
ing memory is its limited capacity, the 
maximum number of separate represen­
tations tha t are concurrently m ain­
tained in the system. Across numerous 
tasks, modalities, and conditions, the 
average capacity is shown to be about

four units (Cowan, 2001), however, it 
also shows some individual differences 
between people (Luck & Vogel, 2013).

Methods for studying capacity and
precision of VWM for objects

W ithin a domain of visual working 
memory (VW M ), capacity limits are 
also established. In their seminal work, 
Luck and Vogel (1997) claimed that 
three-four individual items can be

The study is supported by the Russian Foundation for Basic Research (grant № 15-06-07514).



736 Yu.A. Markov, N.A. Tiurina, YuM. Stakina, I.S. Utochkin

stored in memory, and these items are 
individual objects. They used a version 
of a change detection paradigm (Pash- 
ler, 1988; Phillips, 1974). The typical 
change detection task consists of a 
briefly presented sample containing a 
variable number of objects, a blank 
interval when the sample should be 
stored in VW M, and a test display that 
can be exactly the same as the sample 
or having one item  changed. The 
observer should determine whether the 
change is present or absent. Using 
detection accuracy as a function of the 
number of objects, an actual VW M 
capacity can be estim ated (Cowan, 
2001). In their change detection study, 
Luck and Vogel (1997) found that peo­
ple were equally good at detecting a 
single change in a set of objects varying 
in only one dimension (color) and at 
detecting a change among the same 
num ber of objects varying in four 
dimensions (color, orientation, size, 
and the presence/absence of a gap). 
However, later research questioned 
this conclusion showing that the capac­
ity to detect change strongly depends 
on the heterogeneity and complexity of 
m aterial to  be stored (Alvarez & 
Cavanagh, 2004; Olson & Jiang, 2002; 
W heeler & Treisman, 2002).

In attem pt to address the controver­
sial change detection data, Wilken and 
Ma (2004) suggested using a continu­
ous report task as a strong addition to 
the discrete response system used for 
change detection. In their paradigm, 
participants memorized a sample dis­
play and, after retention, had to adjust 
the color of a single probed item from 
that display to match the original color 
of the sample item in the same location. 
The distribution of errors (response 
deviations from the true color) is then

analyzed, and its standard deviation is 
accepted as a measure of VW M preci­
sion. Com bining th is m ethod w ith 
change detection, W ilken and Ma 
(2004) concluded that VWM capacity 
is limited by the noise increasing with 
additional items and reducing the pre­
cision of each individual item. How­
ever, Zhang and Luck (2008) suggested 
a different approach to the analysis of 
error distribution based on mixture 
modeling. Armed with this method, 
Zhang and Luck (2008) separated two 
types of errors: random  guessing 
(reporting values that are not in mem­
ory, which produces a uniformly dis­
tributed component of the model) and 
an imprecise report of an item that is in 
memory (which produces clustering 
errors around the true value in the form 
of a normal distribution). Calculating 
the standard deviation (SD) for a nor­
mally distributed component of the 
model seems to be a more correct way 
to estimate the precision of an item that 
is really stored in VWM. Also, the total 
area of the random guess distribution 
can be used to determine how many 
items are in fact in memory that is its 
exact capacity.

VWM for ensembles vs. objects

W hile capacity for individual 
objects is severely lim ited (Cowan, 
2001; Brady, Konkle, & Alvarez, 2011; 
Luck & Vogel, 1997), there seem to be 
strategies that the visual system uses to 
bypass these lim itations. One such 
strategy can rely on natural regularities 
of the stimulus to form compressed rep­
resentations of multiple objects. It is 
shown in numerous experiments that 
observers can successfully extract such 
compressed representations in a form of
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ensemble summary statistics across va­
rious sensory (Alvarez & Oliva, 2009; 
Ariely, 2001; Bauer, 2009; Chong & 
Treisman, 2003; Dakin & W att, 1997; 
W atamaniuk & Duchon, 1992) and 
even high-level perceptual (Haberman 
& W hitney, 2007, 2009; Yamanashi 
Leib, Kosovicheva, & Whitney, 2016) 
dimensions. The phenomenon of en­
semble summary statistics consists in 
reasonably rapid (Chong & Treisman, 
2003; Robitaille & Harris, 2011; 
W hiting & Oriet, 2011) and precise 
(Alvarez, 2011) judgment of the aver­
age parameter of multiple objects. The 
idea of VW M  compression using 
ensemble summaries implies th a t 
observers do not memorize the full 
number of objects with great precision 
but can retrieve some inform ation 
about any object using the general 
summary (Brady & Alvarez, 2011; 
Corbett, 2017). The quality of retrieval 
would be inevitably worse than when 
each single object is encoded. But still, 
the estimates would be better than mere 
random guessing even when the num­
ber of objects overcomes the known 
limits of VWM (Corbett, 2017).

W hen individual items become 
organized into an ensemble, they are 
likely to form a single unit for attention 
and working memory (Corbett, 2017; 
Im & Chong, 2014; Im, Park, & Chong, 
2015), which means that the quality of 
ensemble encoding marginally depends 
on the number of individuals within 
(Ariely, 2001, 2008; A ttarha & Moore, 
2015; Attarha, Moore, & Vecera, 2014; 
Chong, Joo, Emmanouil, & Treisman, 
2008; Robitaille & Harris, 2011; 
U tochkin & Tiurina, 2014; but see 
M archant, Simons, & De Fockert, 
2013; Maule & Franklin, 2016; Myczek 
& Simons, 2008; Simons & Myczek,

2008). However, the number of such 
ensemble units can be limited.

Some studies addressed the issue of 
VW M  capacity for multiple objects 
organized in ensemble fashion. Chong 
& Treisman (2005) were the first to 
show th a t ensemble features (mean 
sizes) can be extracted at one time from 
at least two spatially overlapping sets. 
However, they did not test more than 
two such sets. Im and Chong (2014) 
moved further and tested an ability to 
estimate the mean sizes of up to five 
ensembles. They found that the accura­
cy steadily declines starting with three 
sets. This result shows that the capaci­
ty  limit is very low — probably no more 
than two. Attarha and Moore (2015; 
Attarha, et al., 2014) presented four 
ensembles either sim ultaneously or 
sequentially (two at a time) and found 
th a t the sequential m ethod (when 
VW M is loaded by only two objects at 
one time) provides better performance, 
which is also consistent with the limit­
ed VW M capacity for ensembles of 
about two units. This estimate is sup­
ported by the data from experiments on 
approximate estimation of numerosi- 
ty  — another statistical summary of 
multiple objects. Halberda, Sires, and 
Feigenson (2006) reported that their 
participants could estimate an approxi­
mate number of dots in two color sub­
sets w ithout loss in precision, even 
when they did not know in advance 
which subsets they would be asked 
about.

Further experiments showed that 
the limit of ensemble memory probably 
arises not from limits in the “processor” 
computing ensemble properties, such as 
the mean feature or numerosity. In the 
most reported studies (except for 
Attarha & Moore, 2015, and A ttarha et
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al., 2014), ensembles were presented as 
spatially overlapping subsets, w ith 
objects from one subset intermingling 
with objects from other subsets. Such a 
way of presentation makes ensembles 
different from single items and spatially 
grouped sets because they have no clear 
spatial boundaries that would provide 
the “objecthood” of each subset (Trick 
& Pylyshyn, 1993). Using such stimuli, 
Poltoratski and Xu (2013) replicated 
the no-m ore-than-tw o finding from 
Halberda et al. (2006) and then, using 
the partial report, showed that this 
limit reflects a failure to encode more 
than two colors (subset-defining fea­
tures) to VW M rather than computa­
tional lim its of number estim ation. 
Earlier, W atson, Maylor, & Bruce 
(2005) came to a similar conclusion 
and similar capacity estimate when 
asked participants to report the num­
ber of color subsets and measured their 
reaction time.

Our study

From the previous section we see 
that evidence accumulated from differ­
ent paradigms converge to provide a 
conclusion that representing ensembles 
in VW M is capacity-limited, and that 
this limit is very severe -  probably 
around two ensembles at one time. 
Here, we see a discrepancy between the 
estimated capacity for ensembles and 
individual objects. Given that in most 
of the experim ents ensembles were 
defined by colors, ensemble capacity 
seems substantially lower than object 
capacity that is set closer to three-four 
(Luck & Vogel, 1997) or even five 
(Alvarez & Cavanagh, 2004) colors.

In our study, we addressed the dis­
crepancy between the estimated capac­

ities of VW M for ensembles and indi­
vidual objects. We see a very important 
problem in that VW M for ensembles 
was never tested by the standard m eth­
ods typically used in contem porary 
studies of VW M for objects, such as 
change detection  and continuous 
report. The tasks used in the ensemble 
studies (see previous section) are dif­
ferent in terms of their demands -  
report the average (A ttarha & Moore, 
2015; Attarha et al., 2014; Chong & 
Treisman, 2015; Im & Chong, 2014) or 
the number (H alberda et al., 2006; 
Poltoratski & Xu, 2013; Watson et al., 
2005), which probably involves more 
complex operations than just retention 
and retrieval of multiple colors. Partial 
color reporting used by Poltoratski and 
Xu (2013) is closer to standard VWM 
tests but also somewhat more difficult: 
while both change detection and con­
tinuous report keep the spatial refer­
ence of a tested item, Poltoratski and 
Xu’s (2013) method did not, which 
could complicate retrieval. Moreover, 
the precision of ensemble encoding was 
never measured, since the continuous 
report paradigm has never been applied 
to ensembles in a way as it is applied to 
objects.

Our aim, therefore, is to test VWM 
for both objects and ensembles using 
exactly the same standard methods and 
directly compare the corresponding 
parameters. In Experiment 1, we tested 
VW M for displays consisting of one to 
five individual objects, each having a 
unique color, as compared to displays 
consisting of one to five overlapping 
ensembles, each in turn  including sev­
eral objects of a common color. In Expe­
riment 2, we repeated Experiment 1 
controlling for the total area of objects 
and ensembles. In Experiment 3, we
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also repeated Experiment 1, but this 
time we controlled display density and 
eccentricity from the fovea. Finally, in 
Experiment 4, we tested whether VWM 
parameters for ensembles can be ac­
counted for by a sampling strategy that 
implies selective encoding of a few indi­
vidual representatives instead of en­
sembles.

Experiment 1

Method

Participants

Twelve psychology students of the 
Higher School of Economics (11 fema­
le; age: M = 19.45 years, SD = 0.52) 
took part in the experiment for extra 
course credits. All participants report­
ed having normal color vision, normal 
or corrected to normal visual acuity, 
and no neurological problems. Before the 
beginning of the experiment, they signed 
an informed consent form. One partici­
pant’s data were excluded from analysis 
because she showed nearly 100% guess 
rate in the change detection task.

Apparatus and stimuli

Stimulation was developed and pre­
sented using PsychoPy (Pierce, 2007) 
for Linux. Stimuli were presented on a 
standard VGA monitor in a refresh fre­
quency of 75 Hz with 1024X768-pixel 
spatial resolution. Stimuli were presen­
ted against a homogeneous gray field. 
Participants sat at approximately 47 cm 
from the monitor. From that distance, 
the screen subtended at approximately 
44.7X34.2 degrees of visual angle.

Sample displays. Sets of color circles 
were generated within a square region

subtending 24.3 degrees and having a 
center at a fixation point. The diameter 
of each circle randomly varied between 
0.4 and 0.7 degrees. The circles were 
randomly located within this square 
region with the only restriction being 
that they could not overlap. For testing 
memory of individual objects, one to 
five circles could be presented, each 
having a unique color.

For testing memory for ensembles, 
one to five sets of circles could be pre­
sented. Each set consisted of six to 
eight circles sharing a common color. 
As all circles were randomly located in 
the space, the color sets overlapped, 
that is, circles of one color were inter­
spersed with the circles of different col­
ors (except for displays where only one 
subset was present).

We used an HSV (hue-saturation- 
value) palette for coloring the circles in 
our displays. Both saturation and value 
were set at their maximum 1, providing 
that only the hue was variable. We used 
the following algorithm for assigning 
hues to objects or sets. For each display, 
a random hue was first picked from the 
HSV color wheel and assigned to one of 
the sets. For the rest of the objects or 
sets (if more than one is presented), 
hues rotated by n*60 ± 15 degrees 
away from the initial one (where n is an 
integer multiplier from 2 to 5) could be 
assigned. This algorithm provided dis­
tinctiveness between any two colors no 
less than at least 30 degrees along the 
HSV color wheel.

Test displays. In the change detection 
task, test displays could either be the 
exact copies of samples or having one 
object or one set changed in color. In 
the continuous report task, test displays 
originally included the outlines of the 
sample circles w ithout color. One
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probed object or set had thicker ou t­
lines. This outline layout was su r­
rounded by a hue color wheel (internal 
and external diameters were 27.3 and 
31.4 degrees, respectively) used to 
select the hues for adjusting the color 
of the probed object or set.

Procedure

During the experiment, each partic­
ipant underwent two types of tasks, 
each having “object” and “ensemble” 
versions: (1) change detection for 
objects, (2) change detection for en­
sembles, (3) continuous report for 
objects, and (4) continuous report for 
ensembles. The order of the tasks var­
ied across participants. Each task start­
ed with a short practice block.

Change detection. In the change 
detection task (Figure 1), participants 
were instructed to memorize the colors 
of objects or sets presented in sample 
displays and report whether one of the 
colors had changed in the test display.

Each trial started with a presentation of 
a sample display for 300 ms. A 1,000-ms 
blank interval then followed requiring 
the participants to retain the sample in 
memory. After the blank interval, a test 
display appeared un til response or 
5,000 ms, whichever occurred earlier. 
For response, a standard computer key­
board was used. Participants had to 
press < l>  button if they saw a change 
between the sample and test displays, 
or <s> if they did not see any change. 
There was a 0.5 probability of change 
presence. Feedback was provided after 
the response whether it had been cor­
rect or incorrect. The feedback stayed 
on the screen until the participant 
pressed a space bar on the keyboard to 
start the next trial.

Continuous report. In the continuous 
report task (Figure 2), participants also 
had to memorize the colors of objects or 
sets in a sample presented for 300 ms. 
After a 1,000-ms blank interval, a test 
display, as described above, appeared. 
Clicking on the color wheel with a

Change detection task for objects (A) and ensembles (B)
Figure 1
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computer mouse the participants had 
to pick the hue corresponding to the 
hue of the probed object or set. The 
first click on the color wheel caused the 
outline probed object or set to take the 
picked hue. The participants could 
then correct their response by another 
click or dragging the mouse. To confirm 
their final response, the participants 
had to press the space bar. Feedback 
was then presented showing how close 
participant’s response was to the cor­
rect answer. The feedback was provid­
ed by showing two color circles: the 
color of the left circle corresponded to 
the true color of a sample, and the color 
of the right circle corresponded to the 
participant’s response; in addition, a 
black arrow indicated the true sample 
color on the color wheel and a white 
arrow indicated the partic ipan t’s 
response, so participants could see the 
angular distance between their respon­
ses and correct responses. The feedback 
stayed on the screen until the partici­
pant pressed a space bar on the key­
board to start the next trial.

Design and analysis

Two factors were manipulated in 
this experiment. The first one was Unit 
Type (tw o conditions: objects vs. 
ensembles). The second one was Set 
Size, the number of objects or ensembles 
on the screen (five conditions: one to 
five). We used 50 trials per cell of the fac­
torial design. Therefore, in each of two 
tasks, every participant took 2x5x50 = 
= 500 trials.

In the change detection task, we 
measured the capacity of VW M in each 
of the set sizes and unit types using 
Cowan’s K formula (Cowan, 2001): K  = 
= (p(H it) -  p(FA))*N, where K  is an 
average estimate of the number of units 
stored in memory in a given condition, 
p (H it) is the probability of “hits” (cor­
rect detection when the change is pres­
ent), p(FA) is the probability of “false 
alarm s” (false detection  when the 
change is absent), N  is the set size.

For the continuous report task, 
errors were calculated in each trial. The 
error is an angular difference between

Figure 2
Change detection task for objects (A) and ensembles (B)
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the participant’s response and the true 
sample hue of a probed object or ensemble. 
We then analyzed the distribution of 
errors in each condition using the mixture 
model as described by Zhang and Luck 
(2008). The model separates two basic dis­
tributional components: a component of 
the von Mises distribution (which reflects 
responses based on reporting colors that 
are in memory) and a component of the 
uniform distribution (which corresponds 
to random guess reflecting the absence of a 
tested item in memory). We ran mixture 
models using MemToolBox for Matlab 
(Suchow, Brady, Fougnie, & Alvarez, 
2013). From the mixture models, we 
derived two important parameters. The 
standard deviation (SD) of the von Mises 
component was the measure of VWM pre­
cision for colors that are in memory The 
area of the uniform component reflecting 
the overall probability of random guess 
Pguess was used to calculate the VWM 
capacity: C = (1 — Pguess)*N, where C is 
an average estimate of the number of units 
stored in memory, (1 — Pguess) is the prob­
ability that a tested object or ensemble is 
in memory N  is the set size.

Results

In many participants, the mixture 
model failed to converge for the set size 
of five items, which shows that this 
condition could probably be too diffi­
cult. We therefore decided no t to 
include this set size into analysis in this 
and the following experiments.

The change detection task (Figure 
3A) yielded no significant difference 
between object and ensemble capacities 
(F(1, 10) = 2.217, p  = 0.167, ^ 2p= 0.181). 
The effect of the set size was significant 
(F(3, 30) = 43.386, p  < .001, = 0.813).
There were significant differences bet­
ween the set size = 1, and all the rest of 
the conditions (p ’s < 0.001, Bonferroni 
corrected). The difference was also sig­
nificant between the set size = 2 and 
the set sizes = 3 and 4 (p < 0.001, p  = 
= 0.003, Bonferroni corrected). The set 
sizeXunit type interaction was not sig­
nificant (F(3, 30) = 1.106, p  = 0.362, 
<  = 0.100).

The continuous report task (Figure 
3B-C) showed a significant difference 
between object and ensemble capacities

Capacity and SD data from Experiment 1. A — change detection task; 
B, C — continuous report task. Error bars denote 95% CI

Figure 3
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and precisions (F(1, 10) = 23.520, p < 
0.001, ^ 2p = 0.702; F(1, 10) = 5.805, p = 
= 0.037, ^ 2p = 0.367, respectively). The 
effect of set size for capacity again was 
significant (F(3, 30) = 18.751, p <
0. 001, ^ 2p = 0.652). There were signifi­
cant differences between set size = 1 
and all of the rest set sizes (p’s < 0.001, 
Bonferroni corrected). The set sizeX unit 
type in teraction  for capacity was 
significant (F(3, 30) = 8.183, p < 0.001, 
-p2p = 0.450). There were significant dif­
ferences between object capacity and 
ensemble capacity for set size = 3 and 4 
(p = 0.005, p = 0.003). For precision, 
there were no effects of set size (F(3, 
30) = 1.728, p = 0.182, ^ 2p = .147) and 
of set sizeXunit type (F(3, 30) = 2.153, 
p = 0.114, ^ 2p = 0.177).

Experiment 2

As ensembles were more numerous 
than individual objects in Experiment 1, 
they were distributed more densely on 
the screen providing more chance for 
any region to be filled with some items. 
This could lead to a higher probability 
of at least a few items falling into the 
fovea, which is important for precise 
encoding of color. This could explain 
why we observed a higher capacity in 
the ensemble condition of Experiment
1. To address this issue, in Experiment 
2 we equated the foveal density of 
objects and ensembles.

Method

Participants

Twelve psychology students of the 
Higher School of Economics (10 fe­
male; age: M = 19.58 years, SD = 0.79) 
took part in the experiment for extra

course credits. All participants reported 
having normal color vision, normal or 
corrected to normal visual acuity, and 
no neurological problems. Before the 
beginning of the experiment, they 
signed an informed consent form. Three 
participants’ data were excluded from 
analysis because they showed a nearly 
100% guess rate in set size = 3 and 4.

Apparatus and stimuli

A pparatus and stim uli were the 
same as in Experiment 1, but with one 
important exception. In the individual 
object condition, location coordinates 
for the circles were generated within a 
narrower region around fixation (4.59 
degrees). This provided approximately 
the same foveal density as in the ensem­
ble condition, for which coordinates 
were generated within the same area as 
in Experiment 1.

Procedure, design, and analysis were 
exactly the same as in Experiment 1.

Results

Change detection (Figure 4A) again 
showed no difference between object 
and ensemble capacities (F(1, 8) = 4.973, 
p = 0.056, ^ 2p = 0.383). The effect of set 
size was significant (F(3, 24) = 32.836, 
p < 0.001, ^ 2p = .804). There were signi­
ficant differences between the set size = 1 
and all of the rest conditions (p’s < 0.001, 
Bonferroni corrected) and also be t­
ween conditions with the set size = 2, 
and conditions with the set size = 3 and 
4 (p = 0.032, p = 0.001, Bonferroni cor­
rected). The set sizeXunit type interac­
tion was not significant (F(3, 24) = 1.244, 
p = 0.316, ^ 2p = 0.135).

The continuous report task (Figure 
4B) showed a significant difference
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Capacity and SD data from Experiment 2. A — change detection task; 
B, C — continuous report task. Error bars denote 95% CI

Figure 4

between object and ensemble capacities 
(F(1, 8) = 20.026, p  =0.002, ^ 2p = 0.715). 
The effect of the set size was significant 
(F(3, 24) = 17.182, p  < 0.001, ̂  = 0.682). 
There were significant differences be­
tween condition with the set size = 1, 
and all the rest conditions (p’s < 0.001, 
Bonferroni corrected). The set sizeX unit 
type interaction was significant (F(3, 
24) = 6.283, p  = 0.003, ^ 2p = 0.440). 
There was a significant difference 
between object and ensemble capacities 
for the set size = 3 (p < 0.001). For pre­
cision, no significant effects of the set 
size (F(3, 24) = 0.842, p  = 0.484, ^  = 
= 0.095), unit type (F (1 ,8) = 1.821, p  = 
= 0.214, ^ 2p = 0.185), or set sizeXunit 
type (F(3, 24) = 0.654, p = 0.588, ^ 2p = 
= 0.076) were found (Figure 4C).

Experiment 3

In this experiment we addressed 
another potential psychophysical con­
found that could arise between individ­
ual objects and ensembles in Experi­
ment 1. As ensembles were more nu­
merous, their total area was larger than 
the area of the objects. Here we equat­

ed the areas betw een objects and 
ensembles.

Method

Participants

Twelve psychology students of the 
Higher School of Economics (10 fe­
male; age: M = 19.41 years, SD = 0.68) 
took part in the experiment for extra 
course credits. All participants report­
ed having normal color vision, normal 
or corrected to normal visual acuity, 
and no neurological problems. Before 
the beginning of the experiment, they 
signed an informed consent form.

Apparatus and stimuli

Apparatus and stim uli were the 
same as in Experiment 1, bu t w ith 
another im portant exception. In the 
individual object condition, we m ulti­
plied the diameters of circles originally 
used in Experiment 1 by 7, so that the 
new diameters ranged between 0.978 
and 1.738 degrees. This led the average 
area of the individual circles to become
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seven time as big as the average area of 
the circles in Experiment 1. In the 
ensemble condition, areas remained the 
same as in Experiment 1. As the aver­
age number of circles in each ensemble 
was seven, their total area was approxi­
mately equal to the area of the magni­
fied individual objects.

Procedure, design, and analysis we­
re exactly the same as in Experiment 1.

Results and discussion

As in previous experiments, change 
detection (Figure 5A) yielded no sig­
nificant difference between object and 
ensemble capacities (F(1, 11) = .015, p 
= .906, ^ 2p = .001). The effect of set size 
was significant (F(3, 33) = 74.549, p  < 
.001, ^ 2p = .871). There were significant 
differences between the set size = 1 and 
all of the rest conditions (p ’s < 0.001, 
Bonferroni corrected). And also be­
tween conditions with set size = 2, and 
conditions w ith the set size = 3 and 4 
(p < 0.001, p  < 0.001, Bonferroni cor­
rected). The set sizeXunit type interac­
tion was not significant (F(3, 33) = 
= 0.608, p  = 0.615, ^ 2p = 0.052).

The continuous report task (Figure 
5B) showed a significant difference 
between object and ensemble capacities 
(F(1, 11) = 8.257, p  = 0.015, ^ 2p = 0.492). 
The effect of the set size was significant 
(F(3, 33) = 38.700, p  < 0.001, ^  = 0.779). 
There were significant differences 
between condition w ith the set size = 1, 
and all the rest conditions (p ’s < 0.001, 
Bonferroni corrected). The set sizeX unit 
type interaction was significant (F (3, 
33) = 6.036, p  = 0.002, ^  = 0.354). 
There was a significant difference 
between object and ensemble capacities 
for the set size = 3 (p < 0.001). For pre­
cision, no significant effects of set size 
(F(3, 33) = 2.620, p  = 0.067, ^ 2p = 0.192), 
unit type (F(1, 11) = 9.946, p  = 0.009, 
^ 2p = 0.475), or set sizeXunit type (F(3, 
33) = 1.968, p  = 0.138, ^ 2p = 0.152) 
were found (Figure 5C).

Experiment 4

In Experiments 2 and 3 we con­
trolled for physical stimulus factors, 
such as foveal density and area, and 
found basically the same VW M param­
eters for both objects and ensembles.

A

Figure 5
Capacity and SD data from Experiment 3. 

change detection task; B, C — continuous report task. Error bars denote 95% CI
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This result might lead us to conclude 
that VW M treats ensembles as exactly 
the same units as individual objects. 
However, does th is mean th a t an 
ensemble is indeed encoded as a single 
unit in its entirety? The answer is not 
obvious. It is possible that only a lim it­
ed sample of individuals is picked out 
from the entire number of multiple 
objects and encoded into VWM, while 
o ther ensemble members are not 
encoded at all. In Experiment 4, we 
externally controlled the allocation of 
attention towards individual represen­
tatives of ensembles to test whether 
they bias VW M in favor of the corre­
sponding ensembles. To manipulate the 
allocation of attention, we used a mod­
ification of the abrupt onset paradigm 
when a single item (Yantis & Jonides, 
1984) or a group of items (Jiang, Chun, 
& Marks, 2002) captures involuntary 
attention by asynchronous presenta­
tion with the rest of a set. Our main 
idea was to compare VW M parameters 
for ensembles whose individual repre­
sentatives are attended with ensembles 
whose representatives are unattended. 
In Experiment 4, we tested it only on 
the continuous report task for ensem­
bles.

Method

Participants

Eighteen psychology students of the 
Higher School of Economics (16 fe­
male; age: M = 19.44 years, SD = 0.78) 
took part in the experiment for extra 
course credits. All participants report­
ed having normal color vision, normal 
or corrected to normal visual acuity, 
and no neurological problems. Before 
the beginning of the experiment, they

signed an informed consent form. Six 
participants’ data were excluded from 
analysis because they showed nearly a 
100% guess rate in all conditions.

Apparatus and stimuli

A pparatus was the same as in 
Experiment 1. We used only one subset 
of stimuli from Experiment 1, namely, 
those used for the continuous report 
task and the ensemble condition. The 
set size was fixed at five ensembles.

Procedure, design, and analysis

In general, the procedure was the 
same as described in the Continuous 
report section of Experim ent 1. 
However, there was an important addi­
tion. 200 ms before the entire sample 
presentation, a subset of one to four 
objects from that sample appeared and 
stayed until the sample offset (Figure 6). 
Each object in a subset had a unique 
color. After the 1,000-ms retention 
interval, the observers had to set the 
color of a probed ensemble. Critically, 
the probed ensemble could be either 
one that had a representative in the 
precued subset, or one that had no such 
representative.

In this experiment, we manipulated 
two factors. The first was Sample Size, 
the number of the cued circles (1, 2, 3, 
or 4). The second factor was Represen­
tativeness: a representative sample 
always included one item from a subse­
quently probed ensemble; a non- repre­
sentative sample had no members of the 
probed ensemble. Data were analyzed 
using the m ixture model (Zhang & 
Luck, 2008). As in the previous experi­
ments, capacity (C) and precision (SD) 
were our target parameters.
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Time course of trial in Experiment 4
Figure 6

Results

The effect of set size, representative­
ness, and set sizeXrepresentativeness 
interaction were not significant for ca­
pacity and precision (capacity: F (3, 33) = 
= 0.913, p = 0.445, ^ 2p = 0.077; F (1, 11) = 
= 4.475, p = 0.058, ^ 2 = 0.289; F (3, 33) = 
= 1.237, p = 0.312, ^ 2p = 0.101; precision: 
F (3, 33) = 1.160, p = 0.340, ^  = 0.095; 
F(1, 11) = .033, p = 0.858, ^ 2p = 0.003; 
F(3, 33) = .821, p = 0.492, ^ 2p = 0.069; 
Figure 7).

General Discussion

In the series of experiments report­
ed here we investigated VW M for two 
types of perceptual units -  individual 
objects and spatially overlapping 
ensembles. The study was inspired by a 
discrepancy in the literature about the 
capacities of VW M  for individual 
objects (Alvarez & Cavanagh, 2004; 
Luck & Vogel, 1997, 2013; etc.) and 
ensembles (A ttarha & Moore, 2015;

Attarha et al., 2014; Halberda et al., 
2006; Im & Chong, 2014; Poltoratski & 
Xu, 2013; Watson et al., 2005). One 
possible concern about this discrepan­
cy is that it could be caused by differ­
ences in methodologies used for meas­
uring the capacity in the studies of 
object VW M and ensemble VWM. In 
our study, we compared VW M capaci­
ties for objects and ensembles using 
exactly the same methods. These m eth­
ods are recognized as standard in the 
field of object VW M -  change detec­
tion (Luck & Vogel, 1997) and contin­
uous report (Wilken & Ma, 2004) with 
the mixture model (Zhang & Luck, 
2008).

In general, our findings support an 
idea that VW M has approximately the 
same capacities for individual objects 
and ensembles. Moreover, ensembles 
tend to be encoded with even higher 
precision than individual objects with 
exactly the same properties as ensemble 
constituen ts (Experim ent 1). This 
demonstrates a sort of a redundancy
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Figure 7
Capacity and SD data from Experiment 4. Error bars denote 95% CI

3-

B  representative Sample size
D  non-representative

gain caused by object num erosity 
(U tochkin, 2016). However, when 
objects and ensembles are equated in 
their low-level properties, such as 
foveal density  or area, precision 
becomes the same for both objects and 
ensembles (Experiments 2 and 3).

Low VWM capacity fo r  individual 
objects

One result of our study seems to be 
a b it challenging given the data 
described in the literature. Expe­
riments with change detection as the 
basic paradigm  to measure VW M  
capacity for objects usually show 
greater limit numbers -  at least three- 
four (Awh, Barton, & Vogel, 2007; 
Luck & Vogel, 1997) or even almost 
five (Alvarez & Cavanagh, 2005) items 
when observers are asked about the 
color. Using the same method, we came 
to  much lower estimates: in our 
Experiments 1-3, change capacity did 
not exceed two items.

30"

1 2  3 4
Sample size

One possible explanation for this 
rather big difference between our esti­
mate of change detection capacity and 
those reported in the literature is color 
variability. In many of the previous and 
most cited studies (e.g. Alvarez & 
Cavanagh, 2004; Luck & Vogel, 1997), 
their authors used fixed sets of colors 
across all trials. In contrast, in our study, 
the set of used colors changed randomly 
from trial to trial. From other studies, it is 
known that observers can rather effi­
ciently use stimulus regularities to inflate 
the capacity of VWM (Brady, Konkle, & 
Alvarez, 2009). Having a fixed color set, 
observers in the classical studies could 
also expand their useful memory set size 
showing higher capacities. However, this 
expansion could not be explained by pure 
VWM, it had something to do with some 
type of long-term memory as well. In our 
experiments, observers could not form 
any reliable long-term trace that would 
help them in any given trial, so they had 
to rely solely on a current working mem­
ory trace.
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The idea that VW M capacity for 
objects is low because of the between- 
trial color variation gains important 
support from the continuous report 
data -  both from our experiments and 
the existing literature. It can be seen 
that using exactly the same stimulation 
but a different report method we came 
to the same capacity estimate of about 
only two individual object colors. 
Importantly, other studies using the 
continuous report w ith subsequent 
mixture modeling show approximately 
the same estimates: while the probabil­
ity of storing an item in memory is near 
1.0 for one or two items (Zhang & 
Luck, 2008), it drops down to approxi­
mately .75-.83 for three items 
(Fougnie, Asplund, & Marois, 2010) 
th a t corresponds to the capacity 
around 2.25-2.49 items, which is fairly 
below the magic number 4 (Cowan, 
2001). In these continuous report stud­
ies, the colors were also selected ran­
domly in each trial. Therefore, it is pos­
sible that color regularity could be an 
im portant factor tha t led to higher 
capacity estim ates in the previous 
change detection studies. If this is the 
case then the true VW M capacity for 
objects can be even more limited than 
was thought (Cowan, 2001; Luck & 
Vogel, 1997, 2013). Of course, further 
research is necessary to test the role of 
stimulus regularity in VW M capacity.

Sampling vs. exhaustive ensemble 
encoding

Another important question, which 
we addressed after reporting basically 
similar capacities and precision of 
object and ensemble VW M , was 
whether ensemble encoding can be pro­
vided by object encoding. If the observ­

er shows exactly the same performance 
in both conditions, is it possible that 
VW M always encodes a few objects 
within its limited capacity? Or does it 
enlarge the unit and encode the ensem­
ble in its entirety, as if it encoded a sin­
gle object in the object condition? We 
refer the first and the second hypothe­
ses to as sampling and exhaustive 
encoding, respectively. The experimen­
tal d istinction  betw een these two 
hypotheses seems very important for 
our study, given the debate about sam­
pling vs. exhaustive coding in ensemble 
perception (Allik, Toom, Raidvee, 
Averin, & Kreegipuu, 2013; Alvarez, 
2011; Ariely, 2008; Chong et al., 2008; 
Maule & Franklin, 2016; M archant et 
al., 2013; Myczek & Simons, 2008; 
Simons & Myczek, 2008; Utochkin & 
Tiurina, 2014).

In Experiment 4, we directly manip­
ulated local samples that our observers 
were likely to encode with high priori­
ty, because we attracted their exoge- 
neous attention to those samples. We 
asked whether these samples would 
bias encoding tow ards ensembles 
whose representatives are in the sam­
ples and/or away from ensembles that 
are not represented in the sample. We 
found no evidence that sample repre­
sentativeness has any effect on capacity 
or precision. Even when the observers 
did not pay exogeneous attention to 
any item from a probed ensemble, they 
remembered this ensemble as efficient­
ly as those whose representatives had 
been attended. This result allows us to 
rule out sampling as a potential expla­
nation for equal VW M parameters in 
the object and ensemble conditions of 
Experiments 1-3. Even though atten- 
tional salience of the cued object sam­
ple (Jiang et al., 2002) could let the
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members of that sample enter VWM 
with higher probability, this could only 
affect their encoding among other indi­
vidual objects, when they are treated as 
individuals. However, what happens at 
the individual object level seems to 
keep ensemble coding intact. We con­
clude, therefore, th a t each color- 
defined ensemble is likely to be coded 
as a unitary chunk, and the efficiency of 
its encoding does not differ substantial­
ly from the efficiency of encoding the 
objects. It even occurs despite low 
“objecthood” of those ensembles: they 
had no such internal unity since the 
spatial organization of ensemble mem­
bers was poor.

Conclusion

In our study we asked whether indi­
vidual objects and ensembles (multiple 
objects w ith poor objecthood) are 
encoded as similar or different units in 
VWM. Our question was motivated by 
a discrepancy in the existing quantita­
tive data about VW M  capacity for 
objects and ensembles. Using the same

set of m ethods and a proper psy­
chophysical control, we discovered 
that both objects and ensembles are in 
fact encoded with the same efficiency 
(perhaps, some of the previous capacity 
estim ates for objects are inflated). 
Finally, using attentional m anipula­
tions we demonstrated that ensembles 
are encoded exhaustively and not as 
limited samples of individual objects. 
The finding that ensembles can be as 
strong VW M  units as individual 
objects are in line with other recent 
claims (e.g. Huang, 2015). Moreover, 
our finding that attentional manipula­
tions with individual objects did not 
affect VW M for ensembles suggest an 
idea that objects and ensembles can be 
two different representational levels of 
VW M (Brady & Alvarez, 2011; Brady 
et al., 2011).
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Объем и точность зрительной рабочей памяти на объекты и ансамбли

Ю .А. Марков", Н.А. Тюрина", Ю .М . Стакина", И .С . Уточкин"

a Национальный исследовательский университет «Высшая школа экономики», 101000, Россия, 
Москва, ул. Мясницкая, д. 20

Резюме

Предыдущие исследования показывают, что объем зрительной рабочей памяти на цвета 
объектов ограничен и равен примерно 3-5  элементам. Данные, полученные в других иссле­
дованиях, утверждают, что множественные объекты могут храниться в форме более ком­
пактного представления — зрительного ансамбля. В то же время исследования зрительных 
ансамблей показывают, что в зрительной рабочей памяти одновременно могут храниться 
только два ансамбля. Возможно, данные различия связаны со способами измерения харак­
теристик зрительной рабочей памяти, использованными в различных исследованиях: запо­
минание ансамблей не тестировалось при помощи методов, используемых для исследова­
ния памяти на объекты. Мы измерили объем и точность зрительной рабочей памяти для 
объектов и ансамблей, используя два стандартных метода — метод обнаружения измене­
ний и метод градуального отчета с использованием моделей смешения (Mixture model). 
Мы обнаружили, что объем и точность зрительной рабочей памяти на объекты и ансамбли 
одинаковы, при контроле основных психофизических параметров: фовеальной плотности 
и площади предъявления ансамблей и объектов. Мы также показали, что сходство объемов 
зрительной рабочей памяти для объектов и ансамблей обеспечивается механизмом, позво­
ляющим хранить ансамбль в зрительной рабочей памяти в форме целостной репрезента­
ции, что аналогично эффективному хранению информации о единичных объектах.

Клю чевые слова: зрительная рабочая память, восприятие объектов, восприятие 
ансамблей.

М арков Ю рий Алексеевич — стажер-исследователь, научно-учебная лаборатория когни­
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