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Abstract
The paper aims to reconstruct the empirical premia of the structured products with two underlying assets. We apply 
various models that differ in probability distributions of the underlying price processes.
Pricing techniques, currently worldwide accepted, are based on the Black–Scholes model modifications with Gaussian 
distributions. Conventionally a correlation between underlying price processes is not considered. In order to achieve the 
overall objective the paper suggests a pricing model of structured products. The model considers a non-Gaussian realis-
tic market framework for pricing the underlying assets and takes into account their correlation.
The theoretical and methodological basis of our research is quantitative finance, evolutionary equations, dynamical 
systems and field theory.
The paper presents an example of pricing a range of structured products.
We find that the approach to the theoretical premium valuation of the complex financial instrument is interrelated bijec-
tively with statistical properties of the underlying assets. In particular, the paper presents the effectiveness of our model 
with regard to the structured derivatives with the correlated assets that obey non-Gaussian distributions. The fair value 
of the structured product evaluated using our model outperforms estimates obtained by means of other methods as it 
allows lower fair price of the derivatives.
The results of our research may be beneficial to academics, market participants including market analysts, risk-managers 
and developers of financial products.
We have concluded that market participants carry extra costs due to the simple models of the structured products’ fair 
value pricing they apply.
The proposed model looks especially promising within the context of the complex derivatives market which growth has 
been accompanied by low liquidity and high premia, in the absence of a unique framework for pricing the structured 
products that would be consistent with financial market practice.

Keywords: fair value, non-Gaussian joint probability density function with skew, payout function, structured derivatives 
market, structured product, structured products pricing methodology.
JEL: G12, G13.
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State of the art
During the last two decades the world has witnessed strong growth in structured derivatives turnover and expansion 
of product range. These flexible instruments offer a variety of investment solutions for different types of investors to 
enhance performance or reduce risk. Investment banks and companies issue structured products with varying terms, 
payouts and risk profiles tracking the performance of underlying assets which can be equities, indexes, commodities, 
currencies or baskets. Structured products offer exposure to a diverse range of markets and underlying assets.
Nevertheless, liquidity of the structured derivatives market is miniscule in comparison with standardized instruments 
boards (futures, options and swaps markets). The main problem is the absence of a unique framework for pricing the 
structured products that would be consistent with financial market practice – a non-Gaussian stochastic behavior of the 
underlying assets premia [Voit, 2005; Bollerslev, Todorov, 2011; Bollerslev, Todorov, 2014]. Pricing techniques, currently 
worldwide accepted, are based on Gaussian distributions. Conventionally a correlation between underlying price process-
es is not considered. Due to the two fiascos of pricing models (lack of a non-Gaussian framework and disregard of assets 
correlation) fair values in the structured derivatives market are hard to estimate. Professional participants and financial in-
stitutions perceive the absence of fair value as an extra uncertainty. Hence follows that structured products premia contain 
an excess value as a market price of this extra risk. Since the market price of risk is systematically overestimated, an overall 
level of structured products premia is high. This empirical fact explains low liquidity of the complex derivatives market.
The paper aims to suggest a solution to the fair-value-absence problem that cripples the structured products market. We 
propose a pricing model based on bivariate non-Gaussian skewed joint probability distributions of underlying assets 
price processes. The proposed approach is invariant to the structured product type. An implementation of the model 
shall provide a fair pricing, a decrease in overall level of structured products premia and an impetus to liquidity. Inves-
tors that merely regard structured products as a potential investment solution shall get a more welcoming gate to the 
complex derivatives market.
A structured product is a complex financial instrument with two or more underlying assets. Therefore, the model shall 
be based on multivariate probability distributions. As part of the model construction, we develop a mathematical tool for 
pricing a theoretical value of structured products with two underlying assets. It is a challenging research problem.
In the empirical part of the paper, we present the structured products that replicate a range of standardized derivatives 
based on univariate price processes. The components of proposed financial instruments are derivatives. It provides an 
opportunity to compare a theoretical premium of the structured product with a sum of prices of replicated derivatives.

The model
Suppose the structured product has two underlying assets. Then the value F, considered as a function of current time t, 
states x and y, solves the Kolmogorov backward equation (the Dynkin infinitesimal operator) [Baz, Chacko, 2004; Björk, 
2009]:

(1)

where  – unknown function of two financial variables x and y that characterize the dynamics of underlying 
assets market premia (i.e. F determines a time evolution of the structured product’s fair value); and  –  
drift functions;  and  – diffusion functions; – correlation coefficient; r – real number (risk-free 
interest rate)

with the terminal payout condition at expiry:

(2)

where – payout function at expiry Т of the structured product.

In accordance with Feynman–Kac formula [Baz, Chacko, 2004; Björk, 2009] the general solution F of (1) with the termi-
nal payout condition (2) may be written in the form:

(3)
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where  – eigenfunctions; – corresponding eigenvalues; n – serial number of the eigenfunction 
 and the corresponding eigenvalue ; T – expiry; t – time from entry until expiry Т;  – weighting 

function;  – payout function; и  – separated strikes; a – minimum value of x with regard to the contract 
period and given prior period; b – maximum value of y with regard to the contract period and given prior period.

Let’s take a closer look at each component of the formula (3).
1) Weighting function w(x,y). The nature of underlying price processes diffusion is indeterminate. It is impossible to 
identify a pair of uniquely specified diffusion functions  and . It seems more convenient for the mar-
ket purposes to define an approximation of time evolution of the probability density function of the structured product’s 
underlying price processes in terms of the Liouville first-order partial differential equation in I. Prigogine’s and G. Nico-
lis’ specification (hereinafter referred to as “the Prigogine equation”) [Nicolis, Prigogine, 1989]:

(4)

where  – unknown time-evolving bivariate non-Gaussian skewed joint probability density function of two 
random variables x and y that characterize the dynamics of underlying assets market premia; E(x,y) and G(x,y) – right 
parts of the equations of motion (dynamical system).
In other words, we define a time evolution by applying a dynamical system for the logarithms of empirical average prices 
of financial assets. The solution of the Prigogine equation (4) after separation of variables is a weighting function w(x,y) 
that stands for bivariate non-Gaussian skewed joint probability density function of two underlying price processes:

(5)

where α – eigenvalue that corresponds to a weighting function w(x,y); A – arbitrary constant.
It raises the fundamental question: why are we allowed to use the solution of the Prigogine equation (5) for the view of a 
time-evolving fair value of the structured product (3)?
The Prigogine equation (5) is a field for the Dynkin equation (1) if a certain function ψ(w(x,y),x,y) satisfies the bivariate 
Hamilton–Jacobi equation for the Dynkin equation. Thus, specifying a field of the Dynkin equation in some region V 
defines an n-parameter family of solutions of the Dynkin equation, such that one and only one curve from the fami-
ly passes through each point of V. Given that the Prigogine equation is a field for the Dynkin equation (with a certain 
function ψ(w(x,y),x,y) – solution of the Hamilton–Jacobi equation), we are allowed to conclude that the solution of the 
Dynkin equation (1) is identical with the formula (3). Last-mentioned (3) is based on the probability density function 
w(x,y) as a solution of the Prigogine equation (5).
The equation (5) contains, in its left part, the nonlinear right parts of the equations of motion (dynamical system) E(x,y) 
and G(x,y). These functions describe a time evolution of financial variables underlain the structured product that are 
distributed not in accordance to the Gauss’s law. In our research we have developed an approach to setting the dynamical 
system. The main point of the approach is following.
A price process after the trend elimination is irregularly cyclical. At a qualitative level it is closer to the Ornstein–
Uhlenbeck processes that consider a mean reversion. The simplest formalism applied to describing real natural cyclical 
processes with mean reversion (e.g. a Belousov–Zhabotinsky chemical reaction) is a typical non-linearity that provides 
a Poincaré–Andronov–Hopf bifurcation [Marsden, McCracken, 1976]. This bifurcation is related to the appearance (or 
disappearance) of limit cycle from a multiple focus of finite-dimensional dynamical system. A minimal model in which 
a Poincaré–Andronov–Hopf bifurcation is conceivable shall consist of two equations. Applying the methods of normal 
forms theory in typical case leads the equations to the form [Guckenheimer, Holmes, 2002; Marsden, McCracken, 1976]:
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(6)

where c, d, m, q, u, v – scalar parameters (see below).

In the literature on dynamical systems theory [Guckenheimer, Holmes, 2002; Marsden, McCracken, 1976] it is the most 
typical non-linearity among all candidate for right parts of the equations of motion in the sense that it fits a very broad 
class of objects. Thus, we apply it to the description of price processes that are qualitatively similar to some processes 
well-studied in natural sciences.
The parameters of dynamical system (6) c, d, m, q, u, v are numerically defined using market prices of the underlying 
assets that form a structured product (while financial variables x and y in (6) characterize the dynamics of underlying as-
sets market premia). For this purpose, we use the method of projection on the center manifold [Mathews, Walker, 1970], 
similarity transformation, and minimization of the mean squared error [Duda, Hart, 1973] (numerical revaluation on a 
finite number of points is performed repeatedly with new available market information).
By setting the right parts of the equations of motion as in (6), the Prigogine nonhomogeneous first-order partial differen-
tial equation (5) with two nontrivially correlated variables is solved with regard to a bivariate non-Gaussian skewed joint 
probability density function w(x,y). It is impossible to find an analytical (closed-form) solution of the equation (5) with 
given right parts of the equations of motion (6). Thus, the initial differential equation (5), which is a Sturm–Liouville 
problem, is solved in its equivalent form of a problem in the calculus of variations. The equation (5) with a given natural 
boundary conditions (Feller’s boundary classification [Feller, 1968; Feller, 2015]) is solved numerically by means of the 
direct (Ritz) method.
In what follows, basis functions γ(x,y) shall be generated using power moments of the probability density function,  
w(x,y), obtained as a solution to the Prigogine equation (5).
2) Basis functions (eigenfunctions) γ(x,y). Basis is responsible for a time evolution of price process. The projection on a 
chosen basis is a solution of the initial differential equation.
We form basis functions (a set of orthonormal polynomials of two variables, i.e. basis) γ(x,y) using a modified (fitted to 
multivariable functions) operator that is based on determinants of Hankel matrices (the Hamburger’s approach) of pow-
er moments M(x,y,n,k) of a weighting function (a probability density function) w(x,y):

(7)

where Γ – an upper limit of integration domain that corresponds to an upper limit of a weighting function domain (i.e. 
an upper limit of integration domain where a volume under the surface of a weighting function equals to one).

A formula for orthonormal polynomials is written in the form:

(8)

(if k = 0 we have  under the radical sign), where (the values of power moments from the formula (7) are 
denoted there as M):

(9)
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(10)

Each basis function has a power n and contains a unique number of monomials of the form . 
Therefore, the symmetry is broken for the whole set of polynomials. It means that in the subsequent expansion of the 
payout function (3) we escape “a trap”, i.e. there is no longer need for us to replace the original payout with replication.
The obtained set of orthonormal polynomials of two variables γ(x,y) is a basis of the linear space that provides a time 
evolution of the structured product’s fair value.
The basis is applied to forming a degenerate kernel for obtaining a spectrum of eigenvalues λ that are responsible for 
velocity and sign of increment of a fair value of the structured product (3).
3) Eigenvalues λ. The expression (3) for a time-evolving fair value of the complex financial instrument contains eigenval-
ues λ that correspond to eigenfunctions γ(x,y). Recall the way the spectrum has been obtained.
We start with a basis constructed on power moments of the density function that solves the Prigogine equation. Thus, we 
escape cumbersome calculation of eigenvalues otherwise unavoidable.
We then set up a degenerate kernel and represent it in a matrix form. The entries of the matrix are double integrals of 
pairwise products of the basis functions γ(x,y) that originate from Hankel determinants following the Hamburger meth-
od, as shown earlier:

(11)

The eigenvalues of that matrix are taken as eigenvalues λ from the formula (3). Thus, we obtain a spectrum as the eigen-
values of the matrix which entries are pairwise products of the basis functions γ(x,y), i.e. double integrals.
This approach provides a monotonicity of spectrum of eigenvalues fitting to the min-max principle of R. Courant (the 
Courant theorem).
4) Payout function Ф(x,y). Alongside with a probability density function w(x,y), basis functions γ(x,y) and eigenvalues 
λ the expression (3) for a time-evolving fair value F(x,y,t) of the structured product contains weighting coefficients Аn . 
They are coefficients of expansion of the payout function Φ(x,y) by the basis in the corresponding integration domain:

(12)

where , , a, b – defined above, see (3).

The payout function of structured products with two underlying stochastic price processes determines the financial 
result of a deal at expiry. It is a function of two financial variables x and y. E.g.:

where K – a strike price of the structured product.

The integration domain in (12) is, in turn, determined by a payoff profile of the contract. Thus, the entire integration 
domain or either lower or upper limits of integration of the double integral in (12) may be variable.
It should be emphasized here that the weighting coefficients Аn (12) in the formula (3) depend on the specification of 
payout function Φ(x,y) and payoff profile of the structured product. In other words, a choice of a payout function and 
setting the accessory (terminal or terminal and boundary) conditions of the problem influence the weighting coefficients 
Аn  and therefore predetermine fair value of the structured product.
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Given the probability density function w(x,y), basis functions γ(x,y), eigenvalues λ, weighting coefficients Аn  and the in-
tegration domain in the expression (3) we obtain the sought-after function F(x,y,t) of two financial variables x and y; the 
latter describe the dynamics of the underlying assets’ market premia. F(x,y,t) determines time evolution of the structured 
product’s fair value.
Inserting the values of financial variables x and y (i.e. market prices of the underlying assets) at moment t into the func-
tion F(x,y,t) we get a fair value of the complex financial instrument at time t.
Two essential remarks are required here.
Firstly, the real-life financial markets we consider are marked by imperfect (incomplete) efficiency. It means that mar-
ket participants are challenged by a time delay in data handling. Consequently there is a delayed response to incoming 
information.
The prices of complex financial instruments depend on the underlying assets premia. Setting the latter precedes setting 
the former. It is a natural prerequisite for prices forecasting of the structured products by means of the proposed model. 
Inserting the market prices of the underlying assets at time t into the function F(x,y,t), we get a premium of the struc-
tured derivative at a point in time with a small increment, t+ε.
Secondly, we obtain a probability density function w(x,y), basis functions γ(x,y) and eigenvalues λ exogenously as 
regards the Dynkin equation (1). Identification of the relationship linking the Dynkin and the Prigogine equations is a 
valuable output of the research we have embarked on.

Empirical analysis and results
The models of a fair value1 pricing of financial instruments make it possible to reconstruct their empirical premia. A 
mean squared deviation of the theoretical price from its empirical observation (i.e. a precision of estimate) stands for 
consistency measure of the reconstruction. The efficiency of the model is determined by comparing mean squared devi-
ations of premia from the empirical prices. The premia are obtained by applying various models that differ in probability 
distributions of the underlying price processes. The higher precision of a fair value estimate and the higher statistical 
reliability of all solution parameters with the Lyapunov stability are, the more effective the model is. But with regard to 
the structured products, we face the following institutional problem.
The complex financial instruments are bargained in an over-the-counter (OTC) market. Investment banks and manage-
ment companies do not disclose their pricing. Hence, current and historical prices of the structured products are not 
available for the providers of financial information, in particular Bloomberg agency [The Bloomberg Professional Service 
(Bloomberg Terminal)].
Nevertheless, we have a range of empirical net prices2 of the concluded deals with the structured product of the largest 
Swiss financial conglomerate. The product is based on two price processes. This data gives us an opportunity to identify 
the convergence of theoretical prices3 of the existing complex financial instrument to the empirical premia. We propose 
the following inductive logic for projection of the results of these particular deals’ pricing on the structured derivatives 
market in general. It is aimed to solve two tasks – estimate an efficiency of the proposed model and define the key results 
of our research.
First we estimate the standardized exchange-traded instruments by applying three models that differ in probability dis-
tributions of the underlying price processes (Black–Scholes option pricing model [Black, Scholes, 1973]; non-Gaussian 
option pricing model with skew [Borland, 2002a]; an application of the proposed model for univariate case). The pricing 
of the liquid standardized instruments (that are based on univariate stochastic process) is close to a fair4. Thereby an 
analytical estimation of the theoretical premia (e.g. option premium) is the empirics’ reconstruction. A consistency mea-
sure of the reconstruction is a mean squared deviation of the theoretical price from its empirical observation. Make sure 
that the proposed model for the bivariate case performs advantageous results5 in the univariate case where the empirical 
observation is a benchmark. Prove a non-Gaussian stochastic behavior of the underlying assets pricing6.
Then we estimate the existing structured product based on two price processes by applying several approaches (Black–
Scholes model modifications for the bivariate case [Mattoo, 1996; Wystup, 2006; Cheuk, Vorst, 1996; Davydov, Linetsky, 
2002; Douady, 1998; Fu, Madan, Wang, 1997; Geman, Yor, 1993, 1996; Hui, 1997; Lasserre, Prieto-Rumeau, Zervos, 2006; 

1  The terms “fair value” and “theoretical premium/price/value“ are used interchangeably here.
2  Bank margin is eliminated.
3  The prices are obtained by applying various models.
4  In contrast to the complex products that are traded in the OTC market.
5  The highest precision of estimate and the highest statistical reliability of all solution parameters with the Lyapunov stability.
6  VIX options [The Chicago Board Options Exchange (CBOE)] are involved in testing the model; VIX index [S&P Dow Jones Indices; The Chicago 
Board Options Exchange (CBOE)] is one of the underlying assets of the proposed product range of the complex financial instruments.
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Linetsky, 2004; Pelsser, 2000; Risk magazine (Incisive Media); Structured Retail Products]; the proposed model). The 
estimation of the theoretical premium of the complex financial instrument is the reconstruction of the bank pricing tech-
niques7, not the empirics in canonical sense (i.e. when we obtain the fair values of the liquid standardized exchange-trad-
ed instruments). An empirical data on the deals with the structured products is a result of the specific bank pricing 
models application. Comparing the theoretical values8 with the empirics, we shall speak not about a precision rate of the 
theoretical estimates with regard to the market premia but about a sign of the expected value of difference between them. 
With the aim of this comparing it is important to note that the empirical data has to be eliminated from the bank margin 
(i.e. the fees that contain, in particular, the client default risk). Comparing the theoretical prices of the existing complex 
financial instruments with the real market deals’ prices provides us an opportunity to answer the question about the 
expensiveness of the structured products.
Finally we estimate the proposed product range of the complex financial instruments based on two price processes by 
applying several approaches (Black–Scholes model modifications for the bivariate case [Mattoo, 1996; Wystup, 2006; 
Cheuk, Vorst, 1996; Davydov, Linetsky, 2002; Douady, 1998; Fu, Madan, Wang, 1997; Geman, Yor, 1993, 1996; Hui, 1997; 
Lasserre, Prieto-Rumeau, Zervos, 2006; Linetsky, 2004; Pelsser, 2000; Risk magazine (Incisive Media); Structured Retail 
Products]; the proposed model). These instruments are not exchange-traded. We suppose that the underlying assets’ 
(that form a structured product) pricing is almost fair. Market participants have identical estimates of the theoretical 
values of the derivatives based on univariate price processes. We also assume that the upper limit of a set of the complex 
product’s estimates is close to a sum of empirical premia of the components of a scheme related to the product. The given 
model of product’s fair value pricing influences the difference between the theoretical price and a sum of empirical pre-
mia. The results of estimates are compared with a sum of empirical premia of the underlying assets, i.e. the components 
of an investment strategy related to the given complex financial instrument. This approach for the empirical testing is 
applicable to all types of structured products in miniscule liquidity and in the absence of a fair pricing.
The proposed product range satisfies a financial market requirement of the participants for the bundle instrument that 
combines several multipartite deals. As shown below, the proposed complex financial instruments are the lower cost 
analogues of the existing structured products. They shall provide an impetus to liquidity of a range of instruments in the 
financial market. Moreover, the structured products development is essential for the empirical testing of the proposed 
model within the context of the absence of current and historical prices data of the existing complex financial instru-
ments.
Let’s turn to the inductive logic implementation.
Table 1 presents the results of theoretical premia estimation of the liquid six-month European-style call and put VIX 
options traded in 2010–2015 and the first half of 2016 by applying:
– Black–Scholes option pricing model based on Gaussian distribution [Black, Scholes, 1973];
– non-Gaussian option pricing model with skew based on Tsallis distributions [Borland, 2002b];
– an application of the proposed model for univariate case.

Table 1.  The results of VIX options estimates (over a period of 2010–2015 and the first half of 2016)

No Model
Mean squared deviation of the theoretical 
options premia from their empirical 
observations

1 Black–Scholes model 1.27

2 Non-Gaussian option pricing model with skew based on 
Tsallis distribution 0.65

3 An application of the proposed model for univariate case 0.27

Sources: author’s development; [The Bloomberg Professional Service (Bloomberg Terminal); The Chicago Board Options 
Exchange (CBOE); U.S. Department of the Treasury (Daily Treasury Yield Curve Rates); Yahoo! Finance] – empirical data.

7  Each bank uses its own unique pricing methods, the exchange quotations are absent.
8  The values are obtained by applying various models.
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Having considered the results of estimates of the standardized exchange-traded instruments (options) based on univari-
ate stochastic process, we are ready to summarize our findings as follows:
– the proposed new non-Gaussian approach for the theoretical premium valuation of the structured products provides 
the highest precision of the options’9 estimate in comparison with the methods, currently worldwide accepted;
– the proposed approach and the non-Gaussian model with skew (based on Tsallis distribution) provide the higher 
precision of the options fair values’ estimate in comparison with the Black–Scholes model. This empirical fact proves a 
non-Gaussian stochastic behavior of the underlying assets pricing.
Let’s estimate now the theoretical premia of the existing structured product – Dual Digital Option with two underlying 
assets (EUR/AUD and EUR/GBP currency pairs). Table 2 demonstrates the results of estimation one of the Dual Digital 
Options involved in testing the model.

Table 2. The results of Dual Digital call Option estimates (at the entry day 18/03/2015)

No Estimation method \
Model

Black model modification 
based on Gaussian distribution

Proposed model based on 
non-Gaussian distribution

F Δ k F Δ k

Empirical price (bank margin is eliminated): 10.42%

1 Product estimation as a sum of theoreti-
cal prices of replicated derivatives 10.54% -0.12% 0.99 9.43% 0.99% 1.10

2 Product estimation by applying multi-
plication of two univariate distributions 10.45% -0.03% 1.00 9.35% 1.07% 1.11

3 Product estimation by applying a bivari-
ate distribution 10.43% -0.01% 1.00 8.47% 1.95% 1.23

where F – theoretical Dual Digital call option premium (% of Notional principal amount); Δ – difference between 
empirical and theoretical premia; k – ratio of empirical premium to theoretical

Sources: author’s development; [OANDA (exchange rates archive); The Bloomberg Professional Service (Bloomberg 
Terminal); U.S. Department of the Treasury (Daily Treasury Yield Curve Rates)], empirical data of a Swiss bank.

Having considered the results of estimates of the existing structured products based on two price processes, we are ready 
to summarize our findings as follows:
– a set of theoretical premia of the complex derivatives that are obtained by applying Black–Scholes model modifications 
is close to the concluded deals’ prices with a bank margin eliminated. This fact evidences that market participants apply 
the approaches based on Gaussian distribution for the structured products valuation. Meanwhile all three estimation 
methods within the framework of the proposed model based on non-Gaussian distributions lead to the lower theoretical 
premia as compared to the empirics and Black–Scholes model modifications;
– the theoretical price of the existing structured product that is obtained by applying the bivariate distributions in each 
model (Black modification and the proposed model) is lower than a sum of theoretical prices of its components (rep-
licated derivatives). This implies that the bundle instrument development that combines two deals with the correlated 
assets reduces an overall derivatives price level. Thus, we can define a sum of theoretical premia of the components of the 
structured product as the upper limit of a set of its estimates.
We draw an inductive inference that is applicable to estimation of the financial instruments without exchange quotation: 
the upper limit of a set of the complex product’s theoretical estimates is close to a sum of empirical premia of the compo-
nents of a scheme related to the product. The given method of structured product’s fair value pricing influences tangibly 
the difference between the theoretical price and a sum of empirical premia, i.e. the price of the underlying assets correla-
tion. Let’s verify the inference by the example of the proposed range of the structured products.
One essential remark is required here.
Choosing the underlying assets we follow a general principle: the structured product has to be characterized by a 
managed risk-return ratio. Otherwise the product shall translate a destructive force that would be manifested in a risk 
infusion and expansion in the financial market. Formally, the supervision is provided by a nonlinear correlation between 
stochastic processes that characterize the dynamics of underlying assets market premia of the developed structured 
product.

9  These options are components of the developed range of the complex financial instruments.
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The dependence between stochastic processes can be defined in terms of information entropy. A Hellinger–Matusita–
Bhattacharya distance measure S [Granger, Maasoumi, Racine, 2004] should be applied for the complex financial instru-
ments that are based on two price processes:

(13)

where f(x,y) – joint probability density function of the bivariate random variable; g(x) – probability density function of 
the random variable x; h(y) – probability density function of the random variable y.

The positive value of S testifies to a correlation between the random variables (financial variables) x and y. The higher the 
value S, the stronger the correlation.
This measure is applicable for the two different variables’ case in comparison with the Kullback–Leibler distance. The 
latter characterizes a distinction between two distributions on the same training set.
Nonlinear correlation between the price processes is provided by fundamental market laws, in particular those grasped 
by the Mundell–Fleming model [Fleming, 1962; Mundell, 1963], also known as the IS–LM–BoP model. As shown below, 
the structured product that accounts for the fundamental market laws is cheaper than conclusion of several deals – the 
components of the product. This complex financial instrument is beneficial to the market.
Table 3 presents the examples of the proposed structured products.

Table 3. The proposed structured products

No Product name Short description of the product Financial market requirements  
that are satisfied by the product

1 2 3 4

1 The Barrier 
Bermuda Foreign 
Exchange EUR/
USD INTEREST-
ing Swaption

The product is an agreement between 
the buyer and the seller that gives the 
holder the right to buy (or sell) at expiry 
T a difference between two underlying 
assets at a specified strike value. The 
first (variable x) is a ratio of EURIBOR 
3M to EUR/USD currency quote. The 
second (variable y) is LIBOR USD 3M. 
An expiry T is defined by the underlying 
assets motion with regard to a complex 
structure of knock-in and knock-out 
barriers

– requirement of the market participants for 
the lower cost analogues of the existing instru-
ments;
– requirement of the traders for the bundle 
instrument that combines several multipar-
tite deals in the foreign exchange and money 
markets. A long (or a short) position with 
the structured product substitutes three open 
positions with the standardized contracts: one 
FX option, two interest rate swaptions (e.g. the 
structured product may be beneficial to the 
trader that has the liabilities linked to LIBOR 
USD 3M, and the yield depended on EURI-
BOR 3M)

2 Structured Volatili-
ty Indices Strangle 
Swaption with a 
swap settlement at 
expiry

The product is an agreement between 
the buyer and the seller that gives the 
holder the right to buy (or sell) at expiry 
T a difference between two underlying 
assets at a specified strike value. The 
first (variable x) is a market value of 
the CBOE Volatility Index VIX. The 
second (variable y) is a market value of 
the EURO STOXX 50 Volatility Index 
VSTOXX

– requirement of the traders for the integration 
of several frequently concluded multipartite 
deals into one standardized contract. Payout 
functions of the structured product are iden-
tical to the corresponding payout functions of 
the long/short Strangle position that joins buy/
sell of the call and put volatility indices options; 
both options have the same expiry;
– requirement of the financial institutions for 
an impetus to liquidity of a range of instru-
ments in the financial market (in particular, 
VSTOXX options)
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3 Structured 
Volatility Indi-
ces Risk reversal 
Swaption with a 
swap settlement at 
expiry, (Structured 
Volatility Collar –  
when trader has 
open positions 
with underlying 
assets)

The product is an agreement between 
the buyer and the seller that gives the 
holder the right to buy (or sell) at expiry 
T an aggregate value (a sum) of two 
underlying assets at a specified strike 
value. The first (variable x) is a market 
value of the CBOE Volatility Index VIX. 
The second (variable y) is a market value 
of the EURO STOXX 50 Volatility Index 
VSTOXX

– requirement of the traders for the integration 
of several frequently concluded multipartite 
deals into one standardized contract. Payout 
functions of the structured product are iden-
tical to the corresponding payout functions 
of the long/short Risk reversal position that 
joins buy/sell of the call and sell/buy of the put 
volatility indices options; both options have the 
same expiry;
– requirement of the financial institutions for 
an impetus to liquidity of a range of instru-
ments in the financial market (in particular, 
VSTOXX options)

Sources: author’s development.

We have estimated the fair values of the proposed products by applying a Black model modification based on Gaussian 
distribution and the proposed model based on non-Gaussian distribution.
Relating to the Structured six-month Volatility Indices Risk reversal call Swaption (the product No 3; entry: 20.11.2014, 
expiry: 20.05.2015, strike price: 44 percentage points). The Hellinger–Matusita–Bhattacharya distance S (13) equals 0,71. 
This fact testifies a strong correlation between the financial variables x and y that characterize the dynamics of the volatil-
ity indices VIX and VSTOXX respectively. The non-Gaussian skewed joint probability density function w(x,y) that is the 
solution of the bivariate Prigogine equation (5) with given right parts of the dynamical system is following:

The right parts of the equations of motion (6) describe a time evolution of the volatility indices VIX and VSTOXX:

The first five basis functions γ(x,y) constructed on power moments of the probability density function w(x,y) are following:

The payout function for the long position with a call swaption:

Table 4 demonstrates the results of estimating the range of the proposed structured financial products.
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Table 4. The results of the proposed structured products’ estimates (over a period of 2014–2015)

Estimation method Financial 
product Emp Δ σ

Analytical product estimation by applying 
bivariate non-Gaussian distributions (the 
proposed model)

I 7.3% (*) 7.8% 0.5% –

II 10.52 pp (**) 11.22 pp 0.7 pp –

III 3.26 pp 3.42 pp 0.16 pp –

Analytical non-Gaussian product estimation 
as a sum of theoretical prices of replicated 
derivatives

I 7.7% 7.8% 0.1% 0.154

II 11.72 pp 11.22 pp -0.5 pp 2.70

III 3.63 pp 3.42 pp -0.21 pp 0.38

Product estimation as a sum of theoretical 
prices of replicated derivatives by applying a 
Black–Scholes model modification

I 8.1% 7.8% -0.3% 0.506

II 12.08 pp 11.22 pp -0.86 pp 7.10

III 4.33 pp 3.42 pp -0.91 pp 1.49

where I – The Barrier Bermuda Foreign Exchange EUR/USD INTERESTing Swaption, call; II – Structured 
Volatility Strangle, call; III – Structured Volatility Risk reversal, call;  – mean value of the theoretical price 
of the structured product; Emp – mean value of a sum of empirical premia of the replicated derivatives; 
Δ – difference between Emp and ; σ – mean squared deviation of the theoretical structured product price 
(as a sum of theoretical prices of the replicated derivatives) from a sum of empirical premia of the replicated 
derivatives; (*) % of Notional principal amount; (**) pp – percentage point.

Sources: author’s development; [European Exchange; European Money Markets Institute (EURIBOR rates archive); Federal 
Reserve Bank of St. Louis Economic research (LIBOR rates archive); OANDA (exchange rates archive); STOXX Limited; The 
Bloomberg Professional Service (Bloomberg Terminal); The Chicago Board Options Exchange (CBOE); U.S. Department of 
the Treasury (Daily Treasury Yield Curve Rates); Yahoo! Finance] – empirical data.

Figure 1 presents the curves that describe a time evolution of the product III fair value F(x,y,t) estimated by applying:
– the proposed model (Aut curve) based on the density function w(x,y), basis functions γ(x,y), see the formula (3);
– Black–Scholes model modification (Black curve) based on a net theoretical premium as a difference between the the-
oretical premia of the options that form a Risk reversal strategy (theoretical options prices are estimated by a standard 
Black–Scholes model for the univariate price processes).
Figure 1 also demonstrates the curve Emp that describes a time evolution of the difference between the empirical prices:
– six-month put volatility index VIX option (entry: 20.11.2014, expiry: 20.05.2015, strike: 25 percentage points) – Ticker 
VIX UO 05/20/15 P25 Index (sell put trader’s position) [The Bloomberg Professional Service (Bloomberg Terminal); The 
Chicago Board Options Exchange (CBOE); Yahoo! Finance];
– eight-month call volatility index VSTOXX option (entry: 18.09.2014, expiry: 20.05.2015, strike: 19 percentage points); 
– Ticker V2X 05/20/15 C19 Index (buy call trader’s position) [European Exchange; STOXX Limited; The Bloomberg 
Professional Service (Bloomberg Terminal)].
The product’s price in percentage points is on the axis of ordinates.
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Figure 1. The curves that describe a time evolution of Structured Volatility Risk reversal call Swaption price

Sources: author’s development; [European Exchange; STOXX Limited; The Bloomberg Professional Service (Bloomberg 
Terminal); The Chicago Board Options Exchange (CBOE); U.S. Department of the Treasury (Daily Treasury Yield Curve 
Rates); Yahoo! Finance] – empirical data.

Having considered the results of estimates of the proposed structured products based on two price processes, we are 
ready to summarize our findings as follows:
– the theoretical price of the structured product that is obtained by applying the bivariate non-Gaussian distribution 
based on the proposed model is lower than a sum of empirical prices of the replicated derivatives and is lower than a 
sum of theoretical prices of the components10. Moreover, a fair value of the structured product that is received as a sum 
of the theoretical prices of the replicated derivatives11 is higher than a sum of their empirical premia;
– mean squared deviation of a sum of the theoretical premia12 from the empirics is essentially lower than those obtained 
by the Black–Scholes model.
We have verified the Lyapunov stability of the proposed solution that is based on the bivariate non-Gaussian probability 
distributions of the underlying price processes of the structured products. Within the framework of each approach we 
have estimated the statistical reliability of all solution parameters.

Work in progress
The absence of a worldwide accepted model of an analytical estimation of the complex financial products is equal to 
the absence of the mechanism of their fair pricing. This situation suggests the higher risks and hence the overestimated 
premia.
The existing pricing techniques do not consider a correlation between underlying assets premia and the key characteris-
tic of the financial market – a non-Gaussian stochastic behavior of price processes. As a solution to these fiascos we pro-
pose a crucially new model for an analytical estimation of a fair value of the structured financial products that is based 
on bivariate non-Gaussian skewed joint probability distributions of underlying assets price processes. The new approach 
considers a correlation between underlying assets and a non-Gaussian stochastic behavior of price processes.
We have reconstructed empirical premia of the structured products by applying various models that differ in characteris-
tics of probability distributions of underlying price processes.
Having considered the results of reconstruction of a fair value of the complex financial instruments (both the existing 
and the proposed), we are ready to summarize our findings as follows:
– the proposed new theoretical approach provides the higher precision of estimate of the derivatives based on univariate 
stochastic price process (in comparison with the methods, currently worldwide accepted). Since these contracts are trad-
ed in the financial market, the efficiency of the application of the proposed model for the existing derivatives is verified;
– the estimate of the structured products that are not traded in the financial market is obtained. This estimate is com-
pared with the replicated strategies that reproduce the structured contract by a set of traded instruments. The proposed 
approach provides the higher precision of estimating the replica in comparison with the Black–Scholes model;

10  Each component is estimated on its own univariate non-Gaussian distribution.
11  Each derivative is estimated by the Black–Scholes model.
12  The premia are received by the proposed non-Gaussian model.
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– the empirical performance of the proposed model proves a hypothesis about a non-Gaussian stochastic behavior of 
underlying price processes of the complex financial instruments;
– the proposed new theoretical approach reduces essentially the estimate of a fair value of the structured product with 
regard to the empirical premium, a sum of its underlying assets prices, and in comparison with the estimates received 
by other methods (Black–Scholes model modifications). This fact implies that the bundle instrument development that 
combines several deals with the correlated assets reduces essentially an overall structured derivatives price level.
Consequently, the development of an analytical estimation model based on a non-Gaussian distribution of the correlated 
underlying price processes is appealed to solve a problem of a fair pricing absence. It leads to reduction of premia level 
and provides an impetus to liquidity of the structured products market. These circumstances determine a demand of 
professional participants and financial institutions on the results of our research.
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